DOI QR코드

DOI QR Code

In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing

  • Ryu, Donghyeon (Department of Civil & Environmental Engineering, University of California) ;
  • Loh, Kenneth J. (Department of Civil & Environmental Engineering, University of California) ;
  • Ireland, Robert (Northern California Nanotechnology Center (NC2), University of California) ;
  • Karimzada, Mohammad (Northern California Nanotechnology Center (NC2), University of California) ;
  • Yaghmaie, Frank (Northern California Nanotechnology Center (NC2), University of California) ;
  • Gusman, Andrea M. (Northern California Nanotechnology Center (NC2), University of California)
  • Received : 2011.04.14
  • Accepted : 2011.08.25
  • Published : 2011.11.25

Abstract

Various types of strain sensors have been developed and widely used in the field for monitoring the mechanical deformation of structures. However, conventional strain sensors are not suited for measuring large strains associated with impact damage and local crack propagation. In addition, strain sensors are resistive-type transducers, which mean that the sensors require an external electrical or power source. In this study, a gold nanoparticle (GNP)-based polymer composite is proposed for large strain sensing. Fabrication of the composites relies on a novel and simple in situ GNP reduction technique that is performed directly within the elastomeric poly(dimethyl siloxane) (PDMS) matrix. First, the reducing and stabilizing capacities of PDMS constituents and mixtures are evaluated via visual observation, ultraviolet-visible (UV-Vis) spectroscopy, and transmission electron microscopy. The large strain sensing capacity of the GNP-PDMS thin film is then validated by correlating changes in thin film optical properties (e.g., maximum UV-Vis light absorption) with applied tensile strains. Also, the composite's strain sensing performance (e.g., sensitivity and sensing range) is also characterized with respect to gold chloride concentrations within the PDMS mixture.

Keywords

References

  1. Berger, J. and Wilson, D. (2011), Hole in Southwest Jet Attributed to Cracks, The New York Times.
  2. Cochrane, C., Koncar, V., Lewandowski, M. and Dufour, C. (2007), "Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite", Sensors, 7(4), 473-492. https://doi.org/10.3390/s7040473
  3. Correa-Duarte, M.A., Salgueirino Maceira, V., Rinaldi, A., Sieradzki, K., Giersig, M. and Liz-Marzan, L.M. (2007), "Optical strain detectors based on gold/elastomer nanoparticulated films", Gold Bull., 40(1), 6-14. https://doi.org/10.1007/BF03215287
  4. Faraday, M. (1857), "The bakerian lecture: experimental relations of gold (and other metals) to light", Philos. T. R. Soc. L., 147, 145-181. https://doi.org/10.1098/rstl.1857.0011
  5. Fudouzi, H. and Sawada, T. (2006), "Photonic rubber sheets with tunable color by elastic deformation", Langmuir, 22(3), 1365-1368. https://doi.org/10.1021/la0521037
  6. Goyal, A., Kumar, A., Patra, P.K., Mahendra, S., Tabatabaei, S., Alvarez, P.J.J., John, G. and Ajayan, P.M. (2009), "In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films", Macromol. Rapid Comm., 30(13), 1116-1122. https://doi.org/10.1002/marc.200900174
  7. Hendricks, W.R. (1991), The Aloha Airlines accident - A new era for aging aircraft, (Eds. S.N. Atluri, S.G. Sampath and P. Tong) , Structural integrity of aging airplanes, Berlin and New York: Springer-Verlag.
  8. Knite, M., Teteris, V., Kiploka, A. and Kaupuzs, J. (2004), "Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials", Sensor Actuat A-Phys., 110(1-3), 142-149. https://doi.org/10.1016/j.sna.2003.08.006
  9. Kumar, P.S., Pal, S.K., Kumar, S. and Lakshminarayanan, V. (2007), "Dispersion of thiol stabilized gold nanoparticles in lyotropic liquid crystalline systems", Langmuir, 23(6), 3445-3449. https://doi.org/10.1021/la063318z
  10. Lee, B. (2003), "Review of the present status of optical fiber sensors", Opt. Fiber Technol., 9(2), 57-79. https://doi.org/10.1016/S1068-5200(02)00527-8
  11. Li, Y., Cheng, X.Y., Leung, M.Y., Tsang, J., Tao, X.M. and Yuen, M.C.W. (2005), "A flexible strain sensor from polypyrrole-coated fabrics", Synthetic Met., 155(1), 89-94. https://doi.org/10.1016/j.synthmet.2005.06.008
  12. Loh, K.J., Hou, T.C., Lynch, J.P. and Kotov, N.A. (2009), "Carbon nanotube sensing skins for spatial strain and impact damage identification", J. Nondestruct. Eval., 28(1), 9-25. https://doi.org/10.1007/s10921-009-0043-y
  13. Martinez, F., Obieta, G., Uribe, I., Sikora, T. and Ochoteco, E. (2010), "Polymer-based self-standing flexible strain sensor", Sensors, 2010.
  14. Matsuzaki, R. and Todoroki, A. (2007), "Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires", Sensor Actuat A-Phys., 140(1), 32-42. https://doi.org/10.1016/j.sna.2007.06.014
  15. Polte, J., Ahner, T.T., Delissen, F., Sokolov, S., Emmerling, F., Thunemann, A.F. and Kraehnert, R. (2010), "Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled In Situ XANES and SAXS evaluation", J. Am. Chem. Soc., 132(4), 1296-1301. https://doi.org/10.1021/ja906506j
  16. Qian, X. and Park, H.S. (2010a), "The influence of mechanical strain on the optical properties of spherical gold nanoparticles", J. Mech. Phys. Solids, 58(3), 330-345. https://doi.org/10.1016/j.jmps.2009.12.001
  17. Qian, X. and Park, H.S. (2010b), "Strain effects on the SERS enhancements for spherical silver nanoparticles", Nanotechnology, 21(365704), 1-8.
  18. Siffalovic, P., Chitu, L., Vegso, K., Majkova, E., Jergel, M., Weis, M., Luby, S., Capek, I., Keckes, J., Maier, G. A., Satka, A., Perlich, J. and Roth, S.V. (2010), "Towards strain gauges based on a self-assembled nanoparticle monolayer-SAXS study", Nanotechnology, 21(385702), 1-5.
  19. Wang, X., Zhou, J., Song, J., Liu, J., Xu, N. and Wang, Z.L. (2006), "Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire", Nano Lett., 6(12), 2768-2772. https://doi.org/10.1021/nl061802g
  20. Zhou, J., Gu, Y., Fei, P., Mai, W., Gao, Y., Yang, R., Bao, G. and Wang, Z.L. (2008), "Flexible piezotronic strain sensor", Nano Lett., 8(9), 3035-3040. https://doi.org/10.1021/nl802367t
  21. Zhou, M., Wang, B., Rozynek, Z., Xie, Z., Fossum, J.O., Yu, X. and Raaen, S. (2009), "Minute synthesis of extremely stable gold nanoparticles", Nanotechnology, 20(505606), 1-10.

Cited by

  1. Engineering surface ligands of nanocrystals to design high performance strain sensor arrays through solution processes vol.5, pp.9, 2017, https://doi.org/10.1039/C7TC00230K
  2. A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film vol.53, pp.37, 2017, https://doi.org/10.1039/C7CC01776F
  3. Subwavelength Resonant Gratings for Micrometric Strain Sensors vol.23, pp.2, 2017, https://doi.org/10.1109/JSTQE.2016.2596261
  4. Flexible Sensors Based on Nanoparticles vol.7, pp.10, 2013, https://doi.org/10.1021/nn402728g
  5. Polydimethylsiloxane thin film characterization using all-optical photoacoustic mechanism vol.52, pp.25, 2013, https://doi.org/10.1364/AO.52.006239
  6. High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite vol.29, pp.8, 2012, https://doi.org/10.1364/JOSAB.29.002016
  7. A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity vol.9, pp.12, 2017, https://doi.org/10.1039/C6NR09338H
  8. Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties vol.10, pp.3, 2018, https://doi.org/10.1039/C7NR07912E
  9. Broadband miniature fiber optic ultrasound generator vol.22, pp.15, 2014, https://doi.org/10.1364/OE.22.018119
  10. Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain vol.7, pp.10, 2015, https://doi.org/10.1039/C4NR06690A
  11. Design of conductive composite elastomers for stretchable electronics vol.9, pp.2, 2014, https://doi.org/10.1016/j.nantod.2014.04.009
  12. Wearable strain sensor made of carbonized cotton cloth vol.28, pp.4, 2017, https://doi.org/10.1007/s10854-016-5954-7
  13. High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers vol.26, pp.46, 2016, https://doi.org/10.1002/adfm.201603230
  14. Cellular uptake and cytotoxicity of a near-IR fluorescent corrole–TiO2 nanoconjugate vol.140, 2014, https://doi.org/10.1016/j.jinorgbio.2014.06.015
  15. Nanoscale Sensor Technologies for Disease Detection via Volatolomics vol.11, pp.46, 2015, https://doi.org/10.1002/smll.201501904
  16. On-demand curing of polydimethylsiloxane (PDMS) using the photothermal effect of gold nanoparticles vol.9, pp.25, 2017, https://doi.org/10.1039/C7NR01423F
  17. A distributed piezo-polymer scour net for bridge scour hole topography monitoring vol.1, pp.2, 2014, https://doi.org/10.12989/smm.2014.1.2.183
  18. Gold nanoparticle-polydimethylsiloxane films reflect light internally by optical diffraction and Mie scattering vol.2, pp.8, 2015, https://doi.org/10.1088/2053-1591/2/8/085005
  19. Thermal Dynamics of Plasmonic Nanoparticle Composites vol.119, pp.19, 2015, https://doi.org/10.1021/jp512701v
  20. Asymmetric Reduction of Gold Nanoparticles into Thermoplasmonic Polydimethylsiloxane Thin Films vol.5, pp.17, 2013, https://doi.org/10.1021/am4018785
  21. Geometric optics of gold nanoparticle-polydimethylsiloxane thin film systems vol.4, pp.2, 2014, https://doi.org/10.1364/OME.4.000375
  22. Gold nanoparticles reducedin situand dispersed in polymer thin films: optical and thermal properties vol.23, pp.37, 2012, https://doi.org/10.1088/0957-4484/23/37/375703
  23. Thermostable gold nanoparticle-doped silicone elastomer for optical materials vol.518, 2017, https://doi.org/10.1016/j.colsurfa.2017.01.028
  24. Corrugated Photoactive Thin Films for Flexible Strain Sensor vol.11, pp.10, 2018, https://doi.org/10.3390/ma11101970
  25. Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices vol.2, pp.11, 2011, https://doi.org/10.1039/c8qm00356d
  26. Embedded optical nanosensors for monitoring the processing and performance of polymer matrix composites vol.7, pp.46, 2011, https://doi.org/10.1039/c9tc03118a
  27. Photothermal Control over the Mechanical and Physical Properties of Polydimethylsiloxane vol.52, pp.10, 2019, https://doi.org/10.1021/acs.macromol.9b00134
  28. Infrared Plasmonics via Self-Organized Anisotropic Wrinkling of Au/PDMS Nanoarrays vol.1, pp.6, 2011, https://doi.org/10.1021/acsapm.9b00138
  29. Stretchable and Highly Sensitive Optical Strain Sensors for Human-Activity Monitoring and Healthcare vol.11, pp.37, 2011, https://doi.org/10.1021/acsami.9b09815
  30. Wearable sensors based on colloidal nanocrystals vol.6, pp.None, 2011, https://doi.org/10.1186/s40580-019-0180-7
  31. Real-time strain monitoring and damage detection of composites in different directions of the applied load using a microscale flexible Nylon/Ag strain sensor vol.19, pp.3, 2020, https://doi.org/10.1177/1475921719869986
  32. Maskless Formation of Conductive Carbon Layer on Leather for Highly Sensitive Flexible Strain Sensors vol.6, pp.9, 2011, https://doi.org/10.1002/aelm.202000549
  33. Nylon/Ag fiber sensor for real-time damage monitoring of composites subjected to dynamic loading vol.29, pp.11, 2011, https://doi.org/10.1088/1361-665x/abb646
  34. Highly Sensitive and Durable Sea-Urchin-Shaped Silver Nanoparticles Strain Sensors for Human-Activity Monitoring vol.13, pp.12, 2021, https://doi.org/10.1021/acsami.0c22756
  35. Performance of cement composite embeddable sensors for strain-based health monitoring of in-service structures vol.28, pp.2, 2021, https://doi.org/10.12989/sss.2021.28.2.181