• Title/Summary/Keyword: gold nanoparticles

Search Result 276, Processing Time 0.031 seconds

Protein-Coating Evaluation Method of Colloidal Gold Nanoparticles (콜로이드 골드 나노입자의 단백질 수송성 평가법)

  • Kim, Mi-Young;Noh, Sang-Myoung;Kim, Jung-Mogg;Choi, Han-Gon;Kim, Jung-Ae;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.465-469
    • /
    • 2004
  • Colloidal gold nanoparticles might be of use as nano scale delivery systems of various therapeutic materials in the future. Recent studies have reported the feasibility of colloidal gold nanoparticles as gene delivery systems or protein delivery systems. In this study, we aimed to develop a short-step method useful for screening the optimal coating conditions of colloidal gold nanoparticles with proteins. We observed that colloidal gold nanoparticles have properties of changing its unique color when they were exposed to NaCl solution. Taking advantage of the color changing properties of colloidal gold nanoparticles, we applied the color testing method of colloidal gold nanoparticles solutions for evaluating the protein coating nature. Using bovine serum albumin as a model protein, we tested the protein coating of colloidal gold nanoparticles via the color change upon NaCl addition. The optimal coating concentration and coating conditions of colloidal gold nanoparticles with bovine serum albumin were fixed using the color testing methods. We suggest that the color testing method might be applied to optimize the coating condition of colloidal gold nanoparticles with other therapeutic proteins.

Plasmonic effects and size relation of gold-platinum alloy nanoparticles

  • Jawad, Muhammad;Ali, Shazia;Waseem, Amir;Rabbani, Faiz;Amin, Bilal Ahmad Zafar;Bilal, Muhammad;Shaikh, Ahson J.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • Plasmonic effects of gold and platinum alloy nanoparticles (Au-Pt NPs) and their comparison to size was studied. Various factors including ratios of gold and platinum salt, temperature, pH and time of addition of reducing agent were studied for their effect on particle size. The size of gold and platinum alloy nanoparticles increases with increasing concentration of Pt NPs. Temperature dependent synthesis of gold and platinum alloy nanoparticles shows decrease in size at higher temperature while at lower temperature agglomeration occurs. For pH dependent synthesis of Au-Pt nanoparticles, size was found to be increased by increase in pH from 4 to 10. Increasing the time of addition of reducing agent for synthesis of pure and gold-platinum alloy nanoparticles shows gradual increase in size as well as increase in heterogeneity of nanoparticles. The size and elemental analysis of Au-Pt nanoparticles were characterized by UV-Vis spectroscopy, XRD, SEM and EDX techniques.

In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugate with Tabernaemontana divaricata flower SMs Against MCF -7 Breast Cancer Cells

  • Preetam Raj, J.P;Purushothaman, M;Ameer, Khusro;Panicker, Shirly George
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • Biologically stabilized gold nanoparticles were synthesized from the flower aqueous extract of T. divaricata. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, Zeta sizer, FTIR and TEM analysis. T. divaricata reduced gold nanoparticles having particle size and potential of 106.532 nm and -10.2 mV, respectively, with a characteristic peak of 550 nm in UV-visible spectrophotometer. FTIR graph after comparison between the crude flower extract and gold nanoparticles showed three major shifts in the functional groups. The morphology and size of the gold nanoparticles were examined by HRTEM analysis, which showed that most of the nanoparticles were nearly spherical with size of 100 nm. The gold nanoparticles synthesized demonstrated potent anticancer activity against MCF-7 cell line. The findings conclude that the antioxidant molecule present in T. divaricata may be responsible for both reduction and capping of gold nanoparticles which possess potential applications in medicine and pharmaceutical fields.

Light-emitting diodes using gold nanoparticles (금 (gold) 나노 입자를 이용한 고분자 발광소자)

  • Park, Jong-Hyeok;Lim, Yong-Taik;Park, O-Ok;Kim, Jae-Kyeong;Yu, Jae-Woong;Kim, Young-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.119-122
    • /
    • 2003
  • We report a dramatic increase in the photo-stability of a blue-emitting polymer, poly(9,9-dioctylfluorene), achieved by the addition of gold nanoparticles to the polymer. The optical absorption band of gold nanoparticles is tuned to resonate the triplet exciton-ground state band gap energy of the polymer. The photo-oxidation rate of poly(9,9-dioctylfluorene) was drastically reduced by doping the polymer with a very small amount ($10^{-6}-10^{-5}$ volume fraction) of gold nanoparticles. The gold nanoparticles used herein act as the quenching agent of the triplet states and can be directly applied to various blue light emitting polymer thin film ( < 100 nm ) devices.

  • PDF

Functional Gold Nanoparticles (기능성 금 나노입자)

  • Lee, Jun-Wung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.739-749
    • /
    • 2009
  • Ever since gold was found, this element has fascinated human beings. It is stable in air, and is illuminating for several thousands years without changing its colors. Nanoparticles are the basic nanommaterials, and, particularly gold nanoparticles show unique properties which are not shown in bulk states. Scientists are trying to apply these new properties to catalysts, bioscience, optics, etc. Judging from the current research activities, one can envisage that gold nanoparticles can play a major role in opening a new era in diagnoses and treatment of diseases like cancers. However to apply the nanoparticles one must modify the surface of the nanoparticles in order to give the materials certain functionalities. It certainly is worth to review the current research status and challenges in the area of functional gold nanoparticles.

Nanostructure Construction of SiO2@Au Core-Shell by In-situ Synthesis (코어-쉘 구조 SiO2@Au 나노입자의 in-situ 합성)

  • Pyeon, Mu-Jae;Kim, Do Kyung;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.420-425
    • /
    • 2018
  • Core-shell structured nanoparticles are garnering attention because these nanoparticles are expected to have a wide range of applications. The objective of the present study is to improve the coating efficiency of gold shell formed on the surface of silica nanoparticles for $SiO_2@Au$ core-shell structure. For the efficient coating of gold shell, we attempt an in-situ synthesis method such that the nuclei of the gold nanoparticles are generated and grown on the surface of silica nanoparticles. This method can effectively form a gold shell as compared to the conventional method of attaching gold nanoparticles to silica particles. It is considered possible to form a dense gold shell because the problems caused by electrostatic repulsion between the gold nanoparticles in the conventional method are eliminated.

Sintering Characteristics of Au and Ag Nanoparticles Prepared by Inert Gas Condensation (불활성 증발 응축방법으로 제조된 금과 은 나노입자의 소결특성)

  • Lee, Seung-Hyun;Min, Dong-Ryoul;Lee, Kwang-Min
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.165-172
    • /
    • 2007
  • The purpose of this study was to analyze the sintering characteristics of gold and silver nanoparticles. In this study, gold and silver nanoparticles were prepared by using Inert Gas Cndensation (IGC). The sintering temperatures for gold and silver nanoparticles were $100{\sim}1000^{\circ}C\;and\'100{\sim}500^{\circ}C$, respectively. The sintering characteristics of gold and silver nanoparticles prepared by IGC were evaluated by X-ray diffraction(XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Gold and silver nanoparticles with the size of $1{\sim}100\;nm\;and\;10{\sim}100\;nm$, respectively, were obtained. The size of sintered gold and silver nanoparticles increased with an increase in the sintering temperature. XRD data showed that silver nanoparticles were similar with polycrystal single-phase.

Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA)

  • Eskandari, Vahid;Hadi, Amin;Sahbafar, Hossein
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.417-426
    • /
    • 2022
  • Bisphenol A (BPA) is one of the chemicals used in monomer epoxy resins and polycarbonate plastics. The surface-enhanced Raman spectroscopy (SERS) method is precise for identifying biological materials and chemicals at considerably low concentrations. In the present article, the substrates coated with gold nanoparticles have been studied to identify BPA and control the diseases caused by this chemical. Gold nanoparticles were made by a simple chemical method and by applying gold salt and trisodium citrate dihydrate reductant and were coated on glass substrates by a spin-coat approach. Finally, using these SERS substrates as plasmonic sensors and Raman spectroscopy, the Raman signal enhancement of molecular vibrations of BPA was investigated. Then, the molecular vibrations of BPA in some consumer goods were identified by applying SERS substrates as plasmonic sensors and Raman spectroscopy. The fabricated gold nanoparticles are spherical and quasi-spherical nanoparticles that confirm the formation of gold nanoparticles by observing the plasmon resonance peak at 517 nm. Active SERS substrates have been coated with nanoparticles, which improve the Raman signal. The enhancement of the Raman signal is due to the resonance of the surface plasmons of the nanoparticles. Active SERS substrates, gold nanoparticles deposited on a glass substrate, were fabricated for the detection of BPA; a detection limit of 10-9 M and a relative standard deviation (RSD) equal to 4.17% were obtained for ten repeated measurements in the concentration of 10-9 M. Hence, the Raman results indicate that the active SERS substrates, gold nanoparticles for the detection of BPA along with the developed methods, show promising results for SERS-based studies and can lead to the development of microsensors. In Raman spectroscopy, SERS active substrate coated with gold nanoparticles are of interest, which is larger than gold particles due to the resonance of the surface plasmons of gold nanoparticles and the scattering of light from gold particles since the Raman signal amplifies the molecular vibrations of BPA. By decreasing the concentration of BPA deposited on the active SERS substrates, the Raman signal is also weakened due to the reduction of molecular vibrations. By increasing the surface roughness of the active SERS substrates, the Raman signal can be enhanced due to increased light scattering from rough centers, which are the same as the larger particles created throughout the deposition by the spin-coat method, and as a result, they enhance the signal by increasing the scattering of light. Then, the molecular vibrations of BPA were identified in some consumer goods by SERS substrates as plasmonic sensors and Raman spectroscopy.

Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

  • Niranjan Dhanasekar, Naresh;Ravindran Rahul, Ganga;Badri Narayanan, Kannan;Raman, Gurusamy;Sakthivel, Natarajan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1129-1135
    • /
    • 2015
  • The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au3+ to Au0. TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.

Clinical Application of Gold Nanoparticles for Diagnosis and Treatment

  • Baek, Seung-Kuk
    • Medical Lasers
    • /
    • v.10 no.2
    • /
    • pp.61-67
    • /
    • 2021
  • Advances in nanobiotechnology have presented numerous possibilities of more effective diagnostic and therapeutic options. In particular, gold nanoparticles have demonstrated the potential for application in molecular imaging and treatment of cancers, including drug delivery system of certain target molecules, enhancement of radiation therapy, and photothermal treatment. This review discusses the properties, mechanism of action, and clinical application of gold nanoparticles. Although the safety of nanoparticles is yet to be ascertained, there is no doubt that in the future, nanotechnology will play an important role in the development and enhancement of a wide range of diagnostic and treatment modalities.