• 제목/요약/키워드: transfer function synthesis

검색결과 85건 처리시간 0.021초

주파수 전달함수 합성법에 의한 선형시스템의 간소화 (A Simplification of Linear System via Frequency Transfer Function Synthesis)

  • 김주식;김종근;유정웅
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권1호
    • /
    • pp.16-21
    • /
    • 2004
  • This paper presents an approximation method for simplifying a high-order transfer function to a low-order transfer function. A model reduction is based on minimizing the error function weighted by the numerator polynomial of reduced systems. The proposed methods provide better low frequency fit and a computer aided algorithm that estimates the coefficients vector for the numerator and denominator polynomial on the simplified systems from an overdetermined linear system constructed by frequency responses of the original systems. Two examples are given to illustrate the feasibilities of the suggested schemes.

부분구조합성법을 이용한 판의 모우드해석 (Modal Analysis of Plate by Substructure Synthesis Method)

  • 정재훈;지태한;박영필
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.65-74
    • /
    • 1994
  • Various substructure synthesis methods, such as component mode synthesis, building block analysis and reduced impedance method, are studied for the determination of vibration characteristics of plate problems. Comparisons are made for each methods in terms of accuracy and computational efficiency. Following conclusions are made from the results of computer simulations and experiments. i) The computation time of component mode synthesis is much shorter than that of whole structure analysis. The natural frequencies of lower modes obtained from component mode synthesis are almost same as those obtained from whole structure analysis, but in higher modes the differences between those two methods are increases. ii) The transfer function obtained from building block analysis is same as that obtained from the finite element method. iii) Same transfer functions can be obtained by the reduced impedance method. The computation time of reduced impedance mathod is shorter that that of general finite element method, but for the solutions in broad frequency band it requires long calculation time.

  • PDF

TLS를 이용한 QFT의 이득-위상 루프형성법 (A Gain-Phase Loop Shaping Method of QFT using TLS)

  • 김주식;정수현
    • 전기학회논문지P
    • /
    • 제51권2호
    • /
    • pp.94-98
    • /
    • 2002
  • QFT(Quantitative Feedback Theory) is a very practical design technique that emphasizes the use of feedback for achieving the desired system performance tolerances in despite of plant uncertainty and disturbance. The gain-phase loop shaping procedure of QFT is employed to design controller, until the bounds at desired frequencies are satisfied. This paper presents a transfer function synthesis using TLS(Total Least Squares) and offers a loop shaping method with the suggested technique. An example illustrates a feasibility of the presented algorithm.

첨두공진점을 갖는 모델 근사화를 위한 전달함수 합성법 (A Transfer Function Synthesis for Model Approximation with Resonance Peak Value)

  • 김종근;김주식;김흥규
    • 조명전기설비학회논문지
    • /
    • 제22권1호
    • /
    • pp.118-123
    • /
    • 2008
  • 본 논문은 주파수영역에서 첨두공진점을 갖는 고차모델을 저차모델로 근사화하기 위한 주파수 전달함수 합성법을 제안한다. 제안된 근사화 방법은 근사화된 모델의 분모 다항식에 가중된 오차함수의 최소화에 근거하며, 근사화된 모델의 주파수 전달함수에 대한 계수벡터를 추정하기 위해 RLS 기법을 이용한다. 제안된 방법은 저주파수와 첨두공진점에서 우수한 정합특성을 나타내며, 예제에 의해 제안된 방식의 유용성을 검증한다.

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.212-218
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.11-18
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

주파수영역에서 선형시스템의 파라메트릭 식별 (A parametric Identification of Linear System in the Frequency Domain)

  • 이상혁;김주식;정수현;김종근;강금부
    • 전기학회논문지P
    • /
    • 제52권2호
    • /
    • pp.81-84
    • /
    • 2003
  • This paper presents a proper rational transfer function synthesis in the continuous time system from noisy measurements. The proposed method identifies the coefficients vector of the transfer function from an overdetermined linear system that develops from rearranging the two dimensional system matrices and output vectors obtained from the observed frequency responses. By computer simulation, the performance improvement is verified.

계측기에서 얻어진 주파수 응답 함수의 오차 제거 방안 - 전달함수 합성법에의 응용 - (A Suggestion of Method to Remove Bias Error of the FRF Obtained by FFT Analyzer - Application of TFS -)

  • 김승엽;정의봉;서영수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.408-413
    • /
    • 2003
  • The frequency response function(FRF) of each substructure is used for the transfer function synthesis method(TFS). The dynamic characteristics of the full system are obtained by synthesizing FRFs of each substructure. The validation of TFS depends on accuracy for FRF of each substructure. Impact hammer testing Is widely used to obtain the modal characteristics of structures However. the FRF obtained from impact hammer testing contains bias errors, such as finite record length error and leakage error of which characteristic depends on data acquisition time which we call record length. In this paper, a method to remove hose errors is proposed so as to enhance results of TFS. Numerical and experimental examples show that the FRF of full structure can be predicted nearly exactly by the method proposed in this paper.

  • PDF

Function-level module sharing techniques in high-level synthesis

  • Nishikawa, Hiroki;Shirane, Kenta;Nozaki, Ryohei;Taniguchi, Ittetsu;Tomiyama, Hiroyuki
    • ETRI Journal
    • /
    • 제42권4호
    • /
    • pp.527-533
    • /
    • 2020
  • High-level synthesis (HLS), which automatically synthesizes a register-transfer level (RTL) circuit from a behavioral description written in a high-level programming language such as C/C++, is becoming a more popular technique for improving design productivity. In general, HLS tools often generate a circuit with a larger area than those of hand-designed ones. One reason for this issue is that HLS tools often generate multiple instances of the same module from a function. To eliminate such a redundancy in circuit area in HLS, HLS tools are capable of sharing modules. Function-level module sharing at a behavioral description written in a high-level programming language may promote function reuse to increase effectiveness and reduce circuit area. In this paper, we present two HLS techniques for module sharing at the function level.

하이브리드 마이코로파 광대역 증폭기용 임피던스 정합회로 설계 (Design of broad-band impedance matching networks for hybrid microwave amplifier applications)

  • 김남태
    • 전자공학회논문지D
    • /
    • 제35D권5호
    • /
    • pp.11-17
    • /
    • 1998
  • In this paper, the synthesis procedufe of impedance matching network is presented for broad-band microwave amplifier design, whereby amplifier operating in the octave bandwidth is designed and fabricated in detail. The transfer function of the matching netowrks is synthesized by chebyshev approximation and element values for the networks of specified topology are calculatd for various MILs and ripples. After the transistor is modeled by negative-image device model, the synthesis procedure for matching networks is applied to broad-band amplifier design which has electrical performance of about 12dB gain in 4 to 8GHz range. Experimental results obtained from the fabricated amplifier are shown to approach the electrical performance designed in the given frequency range. Construction of the impedance matching networks by transfer function synthesis is very useful method for the design of broad-band microwave amplifiers.

  • PDF