A Simplification of Linear System via Frequency Transfer Function Synthesis

주파수 전달함수 합성법에 의한 선형시스템의 간소화

  • 김주식 (충북대 전기전자컴퓨터공학부) ;
  • 김종근 (충북대 전기공학과) ;
  • 유정웅 (충북대 전기전자컴퓨터공학부)
  • Published : 2004.01.01

Abstract

This paper presents an approximation method for simplifying a high-order transfer function to a low-order transfer function. A model reduction is based on minimizing the error function weighted by the numerator polynomial of reduced systems. The proposed methods provide better low frequency fit and a computer aided algorithm that estimates the coefficients vector for the numerator and denominator polynomial on the simplified systems from an overdetermined linear system constructed by frequency responses of the original systems. Two examples are given to illustrate the feasibilities of the suggested schemes.

Keywords

References

  1. E. J. Davison, 'A Method for Simplifying Linear Dynamic Systems', IEEE Trans. Automat. Contr., vol. Ac-u, pp. 93-101, 1966 https://doi.org/10.1109/TAC.1966.1098264
  2. T. C. Hsia, 'On the Simplification of Linear Systems', IEEE Trans. Automat. Contr., vol. AC-17, pp. 372-374, 1972 https://doi.org/10.1109/TAC.1972.1099991
  3. Y. Shamash, 'Stable Reduced-Order Models Using Pade-Type Approximation', IEEE Trans. Automat. Contr., vol. AC-19, pp. 615-616, 1974 https://doi.org/10.1109/TAC.1974.1100661
  4. H. Xiheng, 'FF-Pade Method of Model Reduction in Frequency Domain', IEEE Trans. Automat. Contr., vol. AC-32, no. 3, pp. 243-246, 1987 https://doi.org/10.1109/TAC.1987.1104583
  5. W. Krajewski, A. Lepschy, and U. Viaro, 'Model Reduction by Matching Markov Parameters, Time Moments, and Impulse-Response Energies', IEEE Trans. Automat. Contr., vol. AC-40, no. 5, pp. 949-953, 1995 https://doi.org/10.1109/9.384238
  6. M. F. Hutton and B. Friedland, 'Routh Approximations for Reducing Order of Linear, Time-Invariant Systems', IEEE Trans. Automat. Contr., vol. AC-20, no. 3, pp. 329-337, 1975 https://doi.org/10.1109/TAC.1975.1100953
  7. V. Krishnamurthy and V.Seshadri, 'Model Reduction Using the Routh Stability Criterion', IEEE Trans. Automat. Contr., vol. AC-23, no. 4, pp, 729-731, 1978 https://doi.org/10.1109/TAC.1978.1101805
  8. C. S. Hsieh and C. Hwang, 'Model Reduction of Continuous-Time Systems Using a Modified Routh Approximation Method', IEE Proc. Control Theory Appl., vol. 136, no. 4, pp. 151-156, 1989 https://doi.org/10.1049/ip-d.1989.0022
  9. Y. Choo, 'Direct Method for obtaining Modified Routh Approxirnants', IEE Electron. Lett., vol. 35, no. 19, pp. 1627-1628, 1999 https://doi.org/10.1049/el:19991135
  10. A. S. S. R. Reddy, 'A Method for Frequency Domain Simplification of Transfer Functions', Int. J Control, vol. 23, no. 3, pp. 403-408, 1976 https://doi.org/10.1080/00207177608922167
  11. R. Luus, 'Optimization in Model Reduction', Int. J Control, vol. 32, no. 5, pp. 741-747, 1980 https://doi.org/10.1080/00207178008922887
  12. A. H. Whitfield, 'Transfer Function Synthesis Using Frequency Response Data', Int. J Control, vol. 43, pp. 1413-1426, 1986 https://doi.org/10.1080/00207178608933548
  13. R. Pintelon, P. Guillaume, Y. Rolain, J. Schoukens, H. Van hamme, 'Parametric Identification of Transfer Functions in the Frequency Domain - A Survey', IEEE Trans. on Auto. Cont, vol. 39, no. 11, pp. 2245-2260, 1994 https://doi.org/10.1109/9.333769
  14. S. Van Huffel and J. Vandewalle, The Total Least Squares Problem Computational Aspects and Analysis, SIAM, 1991 https://doi.org/10.1137/1035157
  15. T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, 2000