• Title/Summary/Keyword: train model

Search Result 1,719, Processing Time 0.029 seconds

A Study on Track Maintenance Scheduling of High-Speed Railway (고속철도 궤도유지보수 일정계획에 관한 연구)

  • Kim, Ki-Dong;Lee, Joo-Hwan
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.43-49
    • /
    • 2008
  • The track of high-speed railway get deteriorated according as using it. In that case, the maintenance jobs are needed for improvement of track quality. A scheduling problem for the track maintenance of high-speed railway is to determine the jobs should be performed daily. In the problem, the set of jobs for maintenance is given. Each job has it's parameters such as due date, emergency level, and processing time. In addition, jobs can be worked during a certain fixed time when the train doesn't move. In this study, we developed a mathematical model of the scheduling problem for the maintenance of high-speed railway and solved the problem using the ILOG CPLEX library.

  • PDF

Nonlinear control of structure using neuro-predictive algorithm

  • Baghban, Amir;Karamodin, Abbas;Haji-Kazemi, Hasan
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1133-1145
    • /
    • 2015
  • A new neural network (NN) predictive controller (NNPC) algorithm has been developed and tested in the computer simulation of active control of a nonlinear structure. In the present method an NN is used as a predictor. This NN has been trained to predict the future response of the structure to determine the control forces. These control forces are calculated by minimizing the difference between the predicted and desired responses via a numerical minimization algorithm. Since the NNPC is very time consuming and not suitable for real-time control, it is then used to train an NN controller. To consider the effectiveness of the controller on probability of damage, fragility curves are generated. The approach is validated by using simulated response of a 3 story nonlinear benchmark building excited by several historical earthquake records. The simulation results are then compared with a linear quadratic Gaussian (LQG) active controller. The results indicate that the proposed algorithm is completely effective in relative displacement reduction.

Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation (다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어)

  • 오세영;류연식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

Shift-transient characteristics of an automatic transmission (자동변속기의 변속과도특성 해석)

  • Chang, Hyo-Whan;Jun, Yoon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.654-662
    • /
    • 1998
  • Shift quality of an automatic transmission in a vehicle is mainly affected by transient pressures in the hydraulic system during shifting. In this study, dynamic modelings of the hydraulic system and the power train of an automatic transmission are made systematically by a bond-graph method. The dynamic characteristics of the line pressures and clutch/brake pressures during shiftings are investigated by simulations and verified by experiments. The effects of clutch/brake pressures on the shift torque are also investigated through driving simulation.

Design of a Robust Control System Using the Fuzzy-LQ Control Technique (퍼지-LQ 제어 기법을 이용한 강인한 제어시스템의 설계)

  • 최재준;소명옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.623-630
    • /
    • 2001
  • The conventional control techniques based a mathematical model are not well suited for dealing with ill-defined and uncertain system like a linear quadratic control. Recently, fuzzy control has been successfully applied to a wide variety of practical problems such as robot, water purification, automatic train operation system etc. In this paper, a design technique of robust Fuzzy-LQ controller for each subsystem is designed. Secondly , all the subsystem controllers are combined by fuzzy weighted averaging method. Finally the effectiveness of the proposed controller is verified through a series of computer simulations for an inverted pole system.

  • PDF

A New Fuzzy Supervised Learning Algorithm

  • Kim, Kwang-Baek;Yuk, Chang-Keun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.399-403
    • /
    • 1998
  • In this paper, we proposed a new fuzzy supervised learning algorithm. We construct, and train, a new type fuzzy neural net to model the linear activation function. Properties of our fuzzy neural net include : (1) a proposed linear activation function ; and (2) a modified delta rule for learning algorithm. We applied this proposed learning algorithm to exclusive OR,3 bit parity using benchmark in neural network and pattern recognition problems, a kind of image recognition.

  • PDF

Performance of music section detection in broadcast drama contents using independent component analysis and deep neural networks (ICA와 DNN을 이용한 방송 드라마 콘텐츠에서 음악구간 검출 성능)

  • Heo, Woon-Haeng;Jang, Byeong-Yong;Jo, Hyeon-Ho;Kim, Jung-Hyun;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.10 no.3
    • /
    • pp.19-29
    • /
    • 2018
  • We propose to use independent component analysis (ICA) and deep neural network (DNN) to detect music sections in broadcast drama contents. Drama contents mainly comprise silence, noise, speech, music, and mixed (speech+music) sections. The silence section is detected by signal activity detection. To detect the music section, we train noise, speech, music, and mixed models with DNN. In computer experiments, we used the MUSAN corpus for training the acoustic model, and conducted an experiment using 3 hours' worth of Korean drama contents. As the mixed section includes music signals, it was regarded as a music section. The segmentation error rate (SER) of music section detection was observed to be 19.0%. In addition, when stereo mixed signals were separated into music signals using ICA, the SER was reduced to 11.8%.

Medical Insurance and Health Education (의료보험과 보건교육)

  • 이규식;홍상진
    • Korean Journal of Health Education and Promotion
    • /
    • v.10 no.2
    • /
    • pp.11-21
    • /
    • 1993
  • Recently the structure of disease is changing its form into chronic disease. Taking into consideration this, the health care system doesn't cope with this tendency. With the health care system for acute disease, it is difficult to decrease medical care cost. At this point, Health education like primary health care can reduce risk factors and possibilities of occurrence of disease. This can cut off the medical insurance finance further more cuts off the rates of insurance cost. This is why health education is the principle part of medical insurance service. Though the law shows health education must be executed in the field of Medical insurance, still it is not enough. In order to carry out health education in the medical insurance organization, the efforts we should make are as follows: 1. Recognize the importance of health education. 2. Set the clear goals in health education. 3. Organize health education system. 4. Train health workers. 5. Systematize health education service. 6. Reform the medical insurance system. 7. Evaluate the effect of health education and practice the model.

  • PDF

Prediction of Heating-line Positions for Line Heating Process by Using a Neural Network (신경회로망을 이용한 선상가열공정의 가열선 위치선정에 관한 연구)

  • 손광재;양영수;배강열
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.31-38
    • /
    • 2003
  • Line heating is an effective and economical process for forming flat metal plates into three-dimensional shapes for plating of ships. Because the nature of the line heating process is a transient thermal process, followed by a thermo elastic plastic stress field, predicting deformed shapes of plate is very difficult and complex problem. In this paper, neural network model o3r solving the inverse problem of metal forming is proposed. The backpropagation neural network systems for determining line-heating positions from object shape of plate are reported in this paper. Two cases of the network are constructed-the first case has 18 lines which have different positions and directions and the second case has 10 parallel heating lines. The input data are vertical displacements of plate and the output data are selected heating lines. The train sets of neural network are obtained by using an analytical solution that predicts plate deformations in line heating process. This method shows the feasibility that the neural network can be used to determine the heating-line positions in line heating process.

Half-hourly Rainfall Monitoring over the Indochina Area from MTSAT Infrared Measurements: Development of Rain Estimation Algorithm using an Artificial Neural Network

  • Thu, Nguyen Vinh;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.465-474
    • /
    • 2010
  • Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and $12-{\mu}m$ channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.