• Title/Summary/Keyword: total transportation cost

Search Result 274, Processing Time 0.026 seconds

Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network (유틸리티 네트워크와 수소 공급망 통합 네트워크 설계를 위한 결정론적 최적화 모델 개발)

  • Hwangbo, Soonho;Han, Jeehoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.603-612
    • /
    • 2014
  • Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network.

Reuse Technology Development and Economic Evaluation of Dyeing Wastewater Treatment Sludge (폐수처리슬러지의 재활용기술개발 및 경제성 평가 -B염색조합을 중심으로-)

  • 임재호;이정연
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.36-43
    • /
    • 2000
  • This study was carried out for treatment and reuse of inorganic sludge from Fenton process at B dyeing wastewater treatment plant. The parameters for pilot-scale treatment system were derived from the results of this study. It was found that $COD_{cl}$ of the treated effluent became lower than 100 mg/l approximately on the optimal reaction condition. 2nd sludge which was generated after redissolving sludge was analyzed, and it showed that reduction ratio of ash in 2nd sludge and total dry sludge weight in comparison with current sludge were 85% and 65%. Also Fe salt in sludge was redissolved about 90~95% of initial Fe by weight. It was estimated almost ₩350,000,000 for sludge reuse process. It was estimated saving of about ₩1,300,000 per day (₩420,000,000 per year) in operating cost based on 30,000 $m^3$/d treatment, which these were about ₩430,000 per day in chemical, ₩1,100,000 per day in sludge transportation and ₩200,000 per day in equipment maintenance. Payback period with interest charge for investment cost was estimated about 10.5 months. Also, net present value (NPV) was ₩792,000,000 and internal rat of return (IRR) was about 110%.

  • PDF

A Study on Estimating the Appropriate Fee of Aids to Navigation Service for the Pyeongtaek Regional Office of Oceans and Fisheries (평택지방해양수산청의 적정 항로표지이용료 추정에 관한 연구)

  • Moon, Beom-Sik;Jeon, Gi-Jun;Kim, Tae-Goun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.347-353
    • /
    • 2020
  • Aids to Navigation (AtoN) contribute to preventing marine accidents and protecting marine environment by providing various information such as location information etc. to ships. Recognizing the importance of the AtoN, a 24 won of the AtoN service fee is charged for ships entering and leaving international trade ports. However, while the 24 won of the AtoN service fee has been maintained since its establishment in 1999, the demand for new roles of the AtoN service for autonomous shipping and smart port operations, etc. has gradually increasing with the change of shipping and port 4.0. Thus the purpose of this study was to estimate the appropriate level of the AtoN service fee in accordance with such changes in the shipping and port industries. To accomplish this, a method of recovering the total cost was introduced to the PROOF (Pyeongtaek Regional Office of Ocean and Fisheries). It is estimated that there are four cases in which estimation of the AtoN service fee is estimated in two cases year by year and conversion year, the AtoNs of PROOF are classified into the all and part of a ship using the trade port. As a result of the estimation, the AtoN service fee of PROOF is estimated at 53.78-71.62 won (as of 2019), and 29.78-47.62 won is higher than the today at 24 won. The results of this study can be used as useful basic data for the operation of budgets and policy management considering the role of the AtoN.

A Study on Integrated Logistic Support (통합병참지원에 관한 연구)

  • 나명환;김종걸;이낙영;권영일;홍연웅;전영록
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.277-278
    • /
    • 2001
  • The successful operation of a product In service depends upon the effective provision of logistic support in order to achieve and maintain the required levels of performance and customer satisfaction. Logistic support encompasses the activities and facilities required to maintain a product (hardware and software) in service. Logistic support covers maintenance, manpower and personnel, training, spares, technical documentation and packaging handling, storage and transportation and support facilities.The cost of logistic support is often a major contributor to the Life Cycle Cost (LCC) of a product and increasingly customers are making purchase decisions based on lifecycle cost rather than initial purchase price alone. Logistic support considerations can therefore have a major impact on product sales by ensuring that the product can be easily maintained at a reasonable cost and that all the necessary facilities have been provided to fully support the product in the field so that it meets the required availability. Quantification of support costs allows the manufacturer to estimate the support cost elements and evaluate possible warranty costs. This reduces risk and allows support costs to be set at competitive rates.Integrated Logistic Support (ILS) is a management method by which all the logistic support services required by a customer can be brought together in a structured way and In harmony with a product. In essence the application of ILS:- causes logistic support considerations to be integrated into product design;- develops logistic support arrangements that are consistently related to the design and to each other;- provides the necessary logistic support at the beginning and during customer use at optimum cost.The method by which ILS achieves much of the above is through the application of Logistic Support Analysis (LSA). This is a series of support analysis tasks that are performed throughout the design process in order to ensure that the product can be supported efficiently In accordance with the requirements of the customer.The successful application of ILS will result in a number of customer and supplier benefits. These should include some or all of the following:- greater product uptime;- fewer product modifications due to supportability deficiencies and hence less supplier rework;- better adherence to production schedules in process plants through reduced maintenance, better support;- lower supplier product costs;- Bower customer support costs;- better visibility of support costs;- reduced product LCC;- a better and more saleable product;- Improved safety;- increased overall customer satisfaction;- increased product purchases;- potential for purchase or upgrade of the product sooner through customer savings on support of current product.ILS should be an integral part of the total management process with an on-going improvement activity using monitoring of achieved performance to tailor existing support and influence future design activities. For many years, ILS was predominantly applied to military procurement, primarily using standards generated by the US Government Department of Defense (DoD). The military standards refer to specialized government infrastructures and are too complex for commercial application. The methods and benefits of ILS, however, have potential for much wider application in commercial and civilian use. The concept of ILS is simple and depends on a structured procedure that assures that logistic aspects are fully considered throughout the design and development phases of a product, in close cooperation with the designers. The ability to effectively support the product is given equal weight to performance and is fully considered in relation to its cost.The application of ILS provides improvements in availability, maintenance support and longterm 3ogistic cost savings. Logistic costs are significant through the life of a system and can often amount to many times the initial purchase cost of the system.This study provides guidance on the minimum activities necessary to Implement effective ILS for a wide range of commercial suppliers. The guide supplements IEC60106-4, Guide on maintainability of equipment Part 4: Section Eight maintenance and maintenance support planning, which emphasizes the maintenance aspects of the support requirements and refers to other existing standards where appropriate. The use of Reliability and Maintainability studies is also mentioned in this study, as R&M is an important interface area to ILS.

  • PDF

A study on Development Process of Fish Aquaculture in Japan - Case by Seabream Aquaculture - (일본 어류 양식업의 발전과정과 산지교체에 관한 연구 : 참돔양식업을 사례로)

  • 송정헌
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.2
    • /
    • pp.75-90
    • /
    • 2003
  • When we think of fundamental problems of the aquaculture industry, there are several strict conditions, and consequently the aquaculture industry is forced to change. Fish aquaculture has a structural supply surplus in production, aggravation of fishing grounds, stagnant low price due to recent recession, and drastic change of distribution circumstances. It is requested for us to initiate discussion on such issue as “how fish aquaculture establishes its status in the coastal fishery\ulcorner, will fish aquaculture grow in the future\ulcorner, and if so “how it will be restructured\ulcorner” The above issues can be observed in the mariculture of yellow tail, sea scallop and eel. But there have not been studied concerning seabream even though the production is over 30% of the total production of fish aquaculture in resent and it occupied an important status in the fish aquaculture. The objectives of this study is to forecast the future movement of sea bream aquaculture. The first goal of the study is to contribute to managerial and economic studies on the aquaculture industry. The second goal is to identify the factors influencing the competition between production areas and to identify the mechanisms involved. This study will examine the competitive power in individual producing area, its behavior, and its compulsory factors based on case study. Producing areas will be categorized according to following parameters : distance to market and availability of transportation, natural environment, the time of formation of producing areas (leaderㆍfollower), major production items, scale of business and producing areas, degree of organization in production and sales. As a factor in shaping the production area of sea bream aquaculture, natural conditions especially the water temperature is very important. Sea bream shows more active feeding and faster growth in areas located where the water temperature does not go below 13∼14$^{\circ}C$ during the winter. Also fish aquaculture is constrained by the transporting distance. Aquacultured yellowtail is a mass-produced and a mass-distributed item. It is sold a unit of cage and transported by ship. On the other hand, sea bream is sold in small amount in markets and transported by truck; so, the transportation cost is higher than yellow tail. Aquacultured sea bream has different product characteristics due to transport distance. We need to study live fish and fresh fish markets separately. Live fish was the original product form of aquacultured sea bream. Transportation of live fish has more constraints than the transportation of fresh fish. Death rate and distance are highly correlated. In addition, loading capacity of live fish is less than fresh fish. In the case of a 10 ton truck, live fish can only be loaded up to 1.5 tons. But, fresh fish which can be placed in a box can be loaded up to 5 to 6 tons. Because of this characteristics, live fish requires closer location to consumption area than fresh fish. In the consumption markets, the size of fresh fish is mainly 0.8 to 2kg.Live fish usually goes through auction, and quality is graded. Main purchaser comes from many small-sized restaurants, so a relatively small farmer and distributer can sell it. Aquacultured sea bream has been transacted as a fresh fish in GMS ,since 1993 when the price plummeted. Economies of scale works in case of fresh fish. The characteristics of fresh fish is as follows : As a large scale demander, General Merchandise Stores are the main purchasers of sea bream and the size of the fish is around 1.3kg. It mainly goes through negotiation. Aquacultured sea bream has been established as a representative food in General Merchandise Stores. GMS require stable and mass supply, consistent size, and low price. And Distribution of fresh fish is undertook by the large scale distributers, which can satisfy requirements of GMS. The market share in Tokyo Central Wholesale Market shows Mie Pref. is dominating in live fish. And Ehime Pref. is dominating in fresh fish. Ehime Pref. showed remarkable growth in 1990s. At present, the dealings of live fish is decreasing. However, the dealings of fresh fish is increasing in Tokyo Central Wholesale Market. The price of live fish is decreasing more than one of fresh fish. Even though Ehime Pref. has an ideal natural environment for sea bream aquaculture, its entry into sea bream aquaculture was late, because it was located at a further distance to consumers than the competing producing areas. However, Ehime Pref. became the number one producing areas through the sales of fresh fish in the 1990s. The production volume is almost 3 times the production volume of Mie Pref. which is the number two production area. More conversion from yellow tail aquaculture to sea bream aquaculture is taking place in Ehime Pref., because Kagosima Pref. has a better natural environment for yellow tail aquaculture. Transportation is worse than Mie Pref., but this region as a far-flung producing area makes up by increasing the business scale. Ehime Pref. increases the market share for fresh fish by creating demand from GMS. Ehime Pref. has developed market strategies such as a quick return at a small profit, a stable and mass supply and standardization in size. Ehime Pref. increases the market power by the capital of a large scale commission agent. Secondly Mie Pref. is close to markets and composed of small scale farmers. Mie Pref. switched to sea bream aquaculture early, because of the price decrease in aquacultured yellou tail and natural environmental problems. Mie Pref. had not changed until 1993 when the price of the sea bream plummeted. Because it had better natural environment and transportation. Mie Pref. has a suitable water temperature range required for sea bream aquaculture. However, the price of live sea bream continued to decline due to excessive production and economic recession. As a consequence, small scale farmers are faced with a market price below the average production cost in 1993. In such kind of situation, the small-sized and inefficient manager in Mie Pref. was obliged to withdraw from sea bream aquaculture. Kumamoto Pref. is located further from market sites and has an unsuitable nature environmental condition required for sea bream aquaculture. Although Kumamoto Pref. is trying to convert to the puffer fish aquaculture which requires different rearing techniques, aquaculture technique for puffer fish is not established yet.

  • PDF

A Study on Analysis of Operating Cost Properties to Demand Responsive Transport System in Rural Areas (농어촌지역 수요응답형교통(DRT)의 운행비용 특성분석)

  • Jeon, Sangmin;Chung, Sungbong;Kim, Sigon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.571-577
    • /
    • 2012
  • Recently, improving public transport service at disabled people has emerged as a social issue in rural areas. By improving expensive and inefficient existing operating system, the rural bus have to change a personalized service. Under these circumstances, government and local governments are promoting the introduction of DRT(Demand response transport). DRT system is intended to promote the user's convenience. But, until now, in-depth research on the operating costs for the introduction of DRT is not well known. This study aims to look at changes in number of vehicle and operating costs before and after introduction of DRT. The results are as follows. Even though introducing DRT, total number of vehicles increases because it does not reduce the existing number of vehicles. And this study estimated to about 5 to 12 percent of the increase in the operating cost comparing before introduction of DRT. Therefore, The introduction of DRT in rural areas is a need to set the exact purpose as promote transportation convenience or cost efficiency.

Genetic Algorithms for a Multi-product Dynamic Lot-sizing and Dispatching Problem with Delivery Time Windows and Multi-vehicle Types (납품시간창과 다종차량을 고려한 다종제품 동적로트크기결정 및 디스패칭 문제를 위한 유전 알고리즘)

  • Kim, Byung Soo;Chae, Syungkyu;Lee, Woon-Seek
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.233-242
    • /
    • 2015
  • This paper analyzes a multi-product inbound lot-sizing and outbound dispatching problem with multi-vehicle types in a third-party logistics distribution center. The product must be delivered to the customers within the delivery time window and backlogging is not allowed. Replenishing orders are shipped by several types of vehicles with two types of the freight costs, i.e., uniform and decreasing, are considered. The objective of this study is to determine the lot-size and dispatching schedules to minimize the total cost with the sum of inbound and outbound transportation and inventory costs over the entire time horizon. In this study, we mathematically derive a mixed-integer programming model and propose a genetic algorithm (GA1) based on a local search heuristic algorithm to solve large-scale problems. In addition, we suggest a new genetic algorithm (GA2) with an adjusting algorithm to improve the performance of GA1. The basic mechanism of the GA2 is to provide an unidirectional partial move of products to available containers in the previous period. Finally, we analyze the results of GA1 and GA2 by evaluate the relative performance using the gap between the objective values of CPLEX and the each algorithm.

The Location Characteristics of the Coal Briquette Manufacturing Industry in Seoul and the Impact of Government Policy (서울시 연탄 제조업의 입지 특성과 정부 정책의 영향)

  • Kim, Jung-Sook;Jang, Young-Jin
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.2
    • /
    • pp.216-230
    • /
    • 2011
  • Coal briquette manufacturers once served as major fuel suppliers for households. For the coal briquette industry, transportation accounts for a considerable portion of the total manufacturing cost as briquettes are heavy in weight but low in value-addition. Moreover, they were put under strict control by the government for the characteristics of the briquettes as public goods. This study intends to identify the factors of and the types of the location of coal briquette manufacturing industry. In particular, the focus of the study is the briquette manufacturers in Seoul. Moreover, this study aims to identify how government policy influenced the location of the industry. The coal briquette manufacturing industry in the example regions were oriented toward the market and trans-shipment points. Simultaneously, the industry underwent spatial changes due to the spatial policy. While derived spatial policies were significant factors for growth of coal briquette industry, explicit spatial policies only modified or facilitated some of the location features resulting from the characteristics of the industry.

  • PDF

Spatial and Temporal Patterns on Wildlife Road-kills on Highway in Korea (우리나라 고속도로에서 야생동물 로드킬에 관한 시공간 추이 분석)

  • Lee, Gyoungju;Tak, Jong-Hoon;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.31 no.4
    • /
    • pp.282-287
    • /
    • 2014
  • The negative impacts of roads on wildlife mortality have been well documented, and one of the most significant impact is wildlife-vehicle collisions (WVCs) in most countries throughout the world. While road impacts on wildlife are a truly global concern with a large socio-economic cost, few researches in Korea have been quantified road-kill occurrence on highways or identified extensively seasonal and geographic patterns of this phenomenon. Therefore, we analyzed highway mortality of wild mammals in Korea using database from five years of nation-wide data on WVCs, and estimated road-kill density by standardizing on per km and per $10^3$ vehicle basis. During 2008 through 2012, a total of 10,940 wildlifes were reported killed on highways, with an average of 2,188 cases per year. There were 2,376 road-kills in 2012, and this equates to 0.01 road-kills per km per week or one road-kill every 88.5 km per week. For time of day, road-kills occurred more frequently in the early morning (05:00-08:00, 38.3%), and day of week did not have a significant influence in any individual year. The road-kill was highest in the spring (March- May, 33.0%) and least in the winter (December-February, 16.1%), and the most frequently killed native species were of Korean water deer (79.7%), raccoon dog (12.7%), Korean hare (3.1%), and leopard cat (1.2%). The overall standardized kill-rate (number/10 km/1,000 vehicles/month) in 2012 was 0.057 with highest on Dangjinyeongdeok highway (0.476), followed by Yeongdong (0.274), Sooncheonwanju (0.233), Iksanpohang (0.187), and Joongang (0.150). This study highlights that the frequency of WVCs are prevalent throughout the highways in Korea. Further work is needed to determine whether such a level of mortality is sustainable from an ecological point of view.

Development of the Sentiment Indicators of Housing Welfare (주거복지지표 개발에 관한 연구 II - 수요자 측면의 주거복지체감지표와 지수를 중심으로 -)

  • Jee, Eun-Young;Eun, Nan-Soon;Hong, Hyung-Ock
    • Journal of the Korean housing association
    • /
    • v.19 no.5
    • /
    • pp.85-92
    • /
    • 2008
  • The aim of this research is to develop the sentiment indicators of housing welfare for evaluating housing welfare policies conducted by the Korean government. The methods of this research are used by analysis of related documents, FGI (Focus Group Interview), and survey. The survey was made by experts and consumers. To analyze the survey, this research also uses confirmatory factor analysis by SPSS (Statistical Package for the Social Science) program, AHP (Analytical Hierarchy Process) by Expert Choice program, frequency, average, percentages, Factor analysis etc. As a result of this research, selected housing welfare indicators are settled as follows: In the housing welfare aspect, 11 indicators in the department of 'Housing Satisfaction' and 11 indicators in the department of 'Community Satisfaction' (22 in total) are suggested. The indicators are 1) Water Supply and Distribution Equipment 2) Heating equipment 3) the size of the exclusive residential area 4) the number of rooms 5) Ventilation and Lighting 6) Sound Insulation (Indoor Noise) 7) Air Pollution/Odor 8) House Deposit 9) Rent Paid 10) Maintenance (Dwelling) Cost 11) The length of Occupation 12) Proximity to Welfare Facilities 13) Educational Environment 14) Convenience of Facilities (shops, hospitals etc.) 15) Convenience of Transportation and Commuting 16) Distance from Workplace 17) Landscape and Green Space (Tree, Flowers, Grass etc.) 18) Vandalism (Destruction Behavior, graffiti etc.) 19) Privacy 20) Noise in Public Places (Drinking, Loudly Talking etc.) 21) Safety from Crime 22) Safety from a Disaster. As of 2007, the housing welfare sentiment index is measured by the survey of 1,000 inhabitants in the public housing, which shows 3.51.