DOI QR코드

DOI QR Code

Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network

유틸리티 네트워크와 수소 공급망 통합 네트워크 설계를 위한 결정론적 최적화 모델 개발

  • Hwangbo, Soonho (Department of Chemical Engineering, POSTECH) ;
  • Han, Jeehoon (Department of Chemical and Biological Engineering, University of Wisconsin-Madison) ;
  • Lee, In-Beum (Department of Chemical Engineering, POSTECH)
  • 황보순호 (포항공과대학교 화학공학과) ;
  • 한지훈 (위스콘신매디슨대학교 화학생물공학과) ;
  • 이인범 (포항공과대학교 화학공학과)
  • Received : 2014.03.28
  • Accepted : 2014.06.05
  • Published : 2014.10.01

Abstract

Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network.

대규모 산업 단지 내에는 다양한 네트워크가 형성되어 있다. 각각의 네트워크들은 네트워크를 구성하는 요소들이 필요로 하는 물질의 생산 및 수송을 통하여 물질의 수요를 충족시킨다. 네트워크 자체적으로 직접 생산을 통하여 각 공장들이 필요로 하는 물질의 수요를 충족시키기도 하며 수요량의 변화나 경제적 요소들로 인하여 네트워크 외부에서 필요로 하는 물질을 구매하여 네트워크 내에서 수송하기도 한다. 특히나 유틸리티 네트워크와 수소 네트워크는 대규모 산업 단지의 대표적인 네트워크들이며 이러한 네트워크들의 비용적 절감 및 네트워크 구성의 최적화와 관련된 많은 연구들이 수행되어 왔다. 하지만 두 네트워크를 연결하여 통합된 네트워크 모델을 구축하여 최적화를 진행한 연구는 진행되어 오지 않았다. 본 논문에서는 유틸리티 네트워크에서 발생되는 여분의 스팀을 수증기 메탄 개질 공정의 원료로 사용하여 수소를 생산한 후, 생산된 수소를 수소 네트워크에 주입하여 수소 네트워크의 수소 수요량을 충족시키는 모델을 개발하였다. 제시된 모델은 유틸리티 네트워크의 유틸리티 수요량과 수소 네트워크의 수소 수요량을 모두 충족시키면서 통합된 네트워크 모델의 최적 설계 및 네트워크 구성도를 결정할 수 있게 하고, 요구되는 전체 비용을 계산 가능하게 한다. 본 연구에서 제시한 모델의 타당성을 평가하기 위하여 국내 최대 규모의 대규모 석유 화학 산업단지를 가지고 있는 여수 석유 화학 단지를 대상으로 사례를 적용해 보았으며 이 사례 연구를 통하여 얻은 결과는 기존의 유틸리티 네트워크와 수소 네트워크를 개별적으로 연구한 결과와 비교하여 더 최적의 결정을 제시할 것이다.

Keywords

References

  1. Harland, C. M., Supply Chain Management: Relationships, Chains and Networks," Brit. J. Manage., 7(1), 63-80(1996). https://doi.org/10.1111/j.1467-8551.1996.tb00106.x
  2. Anderson, S. and Newell, R., "Prospects for Carbon Capture and Storage Technologies," Annu. Rev. Environ. Resour., 29(1), 109-142(2004). https://doi.org/10.1146/annurev.energy.29.082703.145619
  3. Kim, S.-H., Yoon, S.-G., Chae, S.-H. and Park, S., "Economic and Environmental Optimization of a Multi-site Utility Network for an Industrial Complex," J. Environ. Manage., 91(3), 690-705(2010). https://doi.org/10.1016/j.jenvman.2009.09.033
  4. Wang, Y., Chu, K. H. and Wang, Z., "Two-step Methodology for Retrofit Design of Cooling Water Network," Ind. Eng. Chem. Res., 53(1), 274-286(2014). https://doi.org/10.1021/ie400906r
  5. Li, Z., Zhao, L., Du, W. and Qian, F., "Modeling and Optimization of the Steam Turbine Network of an Ethylene Plant," Chin. J. Chem. Eng., 21(5), 520-528(2013). https://doi.org/10.1016/S1004-9541(13)60530-3
  6. Midilli, A., Ay, M., Dincer, I. and Rosen, M. A., "On Hydrogen and Hydrogen Energy Strategies: I: Current Status and Needs," Renewable and Sustainable Energy Reviews, 9(3), 255-271(2005). https://doi.org/10.1016/j.rser.2004.05.003
  7. Eberle, U., Felderhoff, M. and Schuth, F., "Chemical and Physical Solutions for Hydrogen Storage," Angew. Chem. Int. Ed., 48(36), 6608-30(2009). https://doi.org/10.1002/anie.200806293
  8. Kim, J. and Moon, I., "Strategic Design of Hydrogen Infrastructure Considering Cost and Safety Using Multiobjective Optimization," Int. J. Hydrogen Energy, 33(21), 5887-5896(2008). https://doi.org/10.1016/j.ijhydene.2008.07.028
  9. Holladay, J. D., Hu, J., King, D. L. and Wang, Y., "An Overview of Hydrogen Production Technologies," Catal. Today, 139(4), 244-260(2009). https://doi.org/10.1016/j.cattod.2008.08.039
  10. Han, J.-H., Ryu, J.-H. and Lee, I.-B., "A Preliminary Infrastructure Design to Use Fossil Fuels with Carbon Capture and Storage and Renewable Energy Systems," Int. J. Hydrogen Energy, 37(22), 17321-17335(2012). https://doi.org/10.1016/j.ijhydene.2012.08.117
  11. Han, J.-H., Ryu, J.-H. and Lee, I.-B., "Modeling the Operation of Hydrogen Supply Networks Considering Facility Location," Int. J. Hydrogen Energy, 37(6), 5328-5346(2012). https://doi.org/10.1016/j.ijhydene.2011.04.001
  12. Jeong, C. and Han, C., "Byproduct Hydrogen Network Design Using Pressure Swing Adsorption and Recycling Unit for the Petrochemical Complex," Ind. Eng. Chem. Res., 50(6), 3304-3311(2011). https://doi.org/10.1021/ie100683c
  13. Hallikas, J., Karvonen, I., Pulkkinen, U., Virolainen, V. and Tuominen, M., "Risk Management Processes in Supplier Networks," Int. J. Prod. Econ., 90(1), 47-58(2004). https://doi.org/10.1016/j.ijpe.2004.02.007
  14. Gim, B., Kim, J.-W. and Choi, S. J., "The Status of Domestic Hydrogen Production, Consumption, and Distribution," Trans Korean Hydrog New Energy Soc, 16(4), 391-399(2005).
  15. Nexant Inc., Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment, NREL Technical Report No. NREL/SR-510-39946(2006).
  16. Miller, H. J. and Shaw, S.-L., Geographic Information Systems for Transportation: Principles and Applications. Oxford University Press, New York, NY(2001).
  17. Han, J.-H., Ahn, Y.-C., Lee, J.-U. and Lee, I.-B., "Optimal Strategy for Carbon Capture and Storage Infrastructure: A Review," Korean J. Chem. Eng., 29(8), 975-984(2012). https://doi.org/10.1007/s11814-012-0083-3
  18. Han, J.-H. and Lee, I.-B., "Strategic Planning of Carbon Capture & Storage (CCS) Infrastructure Considering the Uncertainty in the Operating Cost and Carbon Tax," Korean Chem. Eng. Res., 50(3), 471-478(2012). https://doi.org/10.9713/kcer.2012.50.3.471
  19. Lozowski, D., "Chemical engineering plant cost index (CEPCI)," Chem. Eng., 119(1), 84(2012).
  20. Williams, R., "Six-tenths Factor Aids in Approximating Costs," Chem. Eng., 54(12), 124-125(1947).
  21. Lim, Y. and Suh, S.-S., "Adsorption Characteristics of Carbon Dioxide and Nitrogen on Zeolite 13X," Appl. Chem., 16(1), 61-64(2012).
  22. Amos, W. A., "Costs of Storing and Transporting Hydrogen," NREL Technical Report No. NREL/TP-570-25106(1998).
  23. Molburg, J. C. and Doctor, R. D., "Hydrogen from Steam-methane Reforming with $CO_2$ Capture. 20th Annual International Pittsburgh Coal Conference," September 15-19, Pittsburgh(2003).
  24. Brooke, A., Kendrick, D., Meeraus, A. and Rosenthal, R., "GAMS: A User's Guide," Course Technology(1988).