DOI QR코드

DOI QR Code

Linear Model Predictive Control of an Entrained-flow Gasifier for an IGCC Power Plant

석탄 가스화 복합 발전 플랜트의 분류층 가스화기 제어를 위한 선형 모델 예측 제어 기법

  • Lee, Hyojin (Department of Biomolecular and Chemical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jay H. (Department of Biomolecular and Chemical Engineering, Korea Advanced Institute of Science and Technology)
  • 이효진 (한국과학기술원 생명화학공학과) ;
  • 이재형 (한국과학기술원 생명화학공학과)
  • Received : 2014.03.20
  • Accepted : 2014.05.09
  • Published : 2014.10.01

Abstract

In the Integrated Gasification Combined Cycle (IGCC), the stability of the gasifier has strong influences on the rest of the plant as it supplies the feed to the rest of the power generation system. In order to ensure a safe and stable operation of the entrained-flow gasifier and for protection of the gasifier wall from the high internal temperature, the solid slag layer thickness should be regulated tightly but its control is hampered by the lack of on-line measurement for it. In this study, a previously published dynamic simulation model of a Shell-type gasifier is reproduced and two different linear model predictive control strategies are simulated and compared for multivariable control of the entrained-flow gasifier. The first approach is to control a measured secondary variable as a surrogate to the unmeasured slag thickness. The control results of this approach depended strongly on the unmeasured disturbance type. In other words, the slag thickness could not be controlled tightly for a certain type of unmeasured disturbance. The second approach is to estimate the unmeasured slag thickness through the Kalman filter and to use the estimate to predict and control the slag thickness directly. Using the second approach, the slag thickness could be controlled well regardless of the type of unmeasured disturbances.

석탄 가스화 복합 발전(coal-based IGCC power plant)에서 가스화기의 동적 상태와 성능이 플랜트 전체에 큰 영향을 미치므로, 가스화기가 문제 없이 운전 되도록 제어 하는 것은 전체 플랜트의 가동률을 높이는 데 있어 매우 중요한 일이라 할 수 있다. 가스화기의 안정적인 운전을 위해서는 고체 슬래그 층의 두께가 일정하게 유지되어야 하는데, 고체 슬래그 두께는 실시간 측정이 불가능하기 때문에 상태를 추정하여 추론 제어해야 한다. 본 연구에서는 Shell-type 가스화기의 동적 모사 모델을 개발하고 다변수 시스템의 추론 제어를 위한 방법으로 두 가지 선형 예측 제어 기법을 적용하여 그 특성을 분석하였다. 측정되지 않는 변수의 상태 추정을 위해 Kalman 필터 기법을 이용하였다. 측정 불가능한 1차 변수를 대신하여 측정 가능한 2차 변수를 제어하는 전통적인 추론 제어 기법으로는 외란의 종류에 따라 추론 제어가 불가능 할 수 있음을 확인하였고, 측정되지 않는 슬래그 두께를 Kalman 필터 기법을 이용하여 추정하여 성능 예측에 반영하고 외란 모델을 사용하여 예측 제어하는 경우 두 가지 측정 불가능한 외란 모두에 대해 추론 제어가 가능함을 확인하였다.

Keywords

References

  1. "2010 Worldwide gasification database," US Department of Energy's National Energy Technology Laboratory(2010).
  2. Paek, M., "300MW IGCC Gasification Plant Engineering and Technology Development Status," Green Energy International Business Conference, Daegu, Korea(2011).
  3. "The 6th basic plan on electricity demand," Ministry of knowledge economy of Korea government, Korea(2013).
  4. Phillips, J., "CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle(IGCC) Power Plants," EPRI, Palo Alto, CA(2006).
  5. Rao, A., "Combined cycle systems for near-zero emission power generation," Woodhead Publishing(2012).
  6. Seggiani, M., "Modelling and Simulation of Time Varying Slag Flow in a Prenflo Entrained-flow Gasifier," Fuel, 77(14), 1611-1621(1998). https://doi.org/10.1016/S0016-2361(98)00075-1
  7. Montagnaro, F. and Salatino, P., "Analysis of Char-slag Interaction and Near-wall Particle Segregation in Entrained-flow Gasification of Coal," Combust. Flame, 157(5), 874-883(2010). https://doi.org/10.1016/j.combustflame.2009.12.006
  8. Massoudi, M. and Wang, P., "Slag Behavior in Gasifiers.PartII: Constitutive Modeling of Slag," Energies, 6(2), 807-838(2013). https://doi.org/10.3390/en6020807
  9. Lee, J., "Model Predictive Control: Review of the Three Decades of Development," International Journal of Control, Automation, and Systems, 9(3), 415-424(2011). https://doi.org/10.1007/s12555-011-0300-6
  10. Yeu, J., Kim, W., Im, J., Lee, D. and Jee, G., "Obstacle Parameter Modeling for Model Predictive Control of Unmanned Vehicle," Journal of Institute of Control, Robotics and Systems, 18(12), 1132-1138(2012). https://doi.org/10.5302/J.ICROS.2012.18.12.1132
  11. Wen, C. Y. and Chaung, T. Z., "Entrained Coal Gasifier Modeling," Ind. Eng. Chem. Process Des. Dev., 18(4), 684-695(1979). https://doi.org/10.1021/i260072a020
  12. Valero A. and Uson S., "Oxy-co-gasification of Coal and Biomass in an Integrated Gasification Combined Cycle (IGCC) Power Plant," Energy, 31(10-11), 1643-1655(2006). https://doi.org/10.1016/j.energy.2006.01.005
  13. Govind, R. and Shah, J., "Modeling and Simulation of An Entrained Flow Coal Gasifier," AIChE J., 30(1), 79-92(1984). https://doi.org/10.1002/aic.690300113
  14. Lee, J. W., Park, S., Seo, H., Kim, M., Kim, S., Chi, J. and Kim, K., "Effects of Burner Type on a Bench-scale Entrained Flow Gasifier and Conceptual Modeling of the System with Aspen Plus," Korean J. Chem. Eng., 29(5), 574-582(2012). https://doi.org/10.1007/s11814-011-0217-z
  15. Robinson, P. J. and Luyben, W., "Simple Dynamic Gasifier Model That Runs in Aspen Dynamics," Ind. Eng. Chem. Res., 47(20), 7784-7792(2008). https://doi.org/10.1021/ie800227n
  16. Watanabe, H. and Otaka, M., "Numerical Simulation of Coal Gasification in Entrained Flow Coal Gasifier," Fuel, 85(12-13), 1935-1943(2006). https://doi.org/10.1016/j.fuel.2006.02.002
  17. Sun, B., Liu, Y., Chen, X., Zhou, Q. and Su, M., "Dynamic Modeling and Simulation of Shell Gasifier in IGCC," Fuel Process. Technol., 92(8), 1418-1425(2011). https://doi.org/10.1016/j.fuproc.2011.02.017
  18. Mongahan, R. and Ghoniem, A, "A dynamic Reduced Order Model for Simulating Entrained Flow Gasifiers PartI: Model Development and Description," Fuel, 91(1), 61-80(2012). https://doi.org/10.1016/j.fuel.2011.07.015
  19. Park, Y., Moon, J., Lee S., Lee, D. and Jin, G., "The Computeraided Simulation Study on the Gasification Characteristics of the Roto Coal in the Partitioned Fluidized-bed Gasifier," Korean Chem. Eng. Res., 50(3), 511-515(2012). https://doi.org/10.9713/kcer.2012.50.3.511
  20. Ra, H., Lee, S., Yoon, S., Choi, Y., Kim, J. and Lee, J., "Entrainedflow Coal Water Slurry Gasification," Korean Chem. Eng. Res., 48(2), 129-139(2010).
  21. Gnielinski, V., "New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow," International Chemical Engineering, 16(2), 359-368(1976).
  22. Mills, K. and Rhine, J., "The measurement and Estimation of the Physical Properties of Slag Formed During Coal Gasification: 2. Properties Relevant to Heat Transfer," Fuel, 68(7), 904-910(1989). https://doi.org/10.1016/0016-2361(89)90128-2
  23. Schobert, H., Streeter, R. and Diehl, E., "Flow Properties of Low-rank Coal Ash Slags: Implications for Slagging Gasification," Fuel, 64(11), 1611-1617(1985). https://doi.org/10.1016/0016-2361(85)90380-1
  24. Mills, K. and Keene, B., "Physical Properties of BOS Slags," Int. Mater. Rev., 32(1), 1-120(1987). https://doi.org/10.1179/095066087790150296
  25. Dixon, R., Pike, W. and Donne, S., "The ALSTOM Benchmark Challenge on Gasifier Control," J. Syst. Control Eng., 214(6), 389-394(2000).
  26. Dixon, R., "Benchmark Challenge at Control 2004," Comput. Control Eng. IEE, 10(3), 21-23(2005).
  27. Seyab, A., Cao, Y. and Yang, S., "Predictive Control for the ALSTOM Gasifier Problem," IEE Proc.-Control Theory Appl., 153(3), 293-301(2006). https://doi.org/10.1049/ip-cta:20050049
  28. Seyab, A. and Cao, Y., "Nonlinear Model Predictive Control for the ALSTOM Gasifier," Journal of Process Control, 16(8), 795-808(2006). https://doi.org/10.1016/j.jprocont.2006.03.003
  29. Bittanti, S., Calloni, L., Canevese, S., Marco and A., Prandoni, V., "A Clean-coal Control Technology Application Study: Modelling and Control Issues for a Coal Gasifier," 7th IFAC International Symposium on Advanced Control of Chemical Processes, Turkey(2009).
  30. Muske, K. and Badgwell, T., "Disturbance Modeling for Offsetfree Linear Model Predictive Control," Journal of Process Control, 12(5), 617-632(2002). https://doi.org/10.1016/S0959-1524(01)00051-8
  31. Bemporad, A., Morari, M. and Ricker, N. L., "Model Predictive Control Toolbox User's Guide," The MathWorks Inc., Natick, MA(2012).

Cited by

  1. Process Modeling System of a Combined Cycle Plant for Steady State Simulation with Model Based Approach vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.545