• Title/Summary/Keyword: topological extension

Search Result 36, Processing Time 0.024 seconds

A Completion of Semi-simple MV-algebra

  • 박평우
    • Journal for History of Mathematics
    • /
    • v.13 no.1
    • /
    • pp.125-136
    • /
    • 2000
  • The notion of MV-algebra was introduced by C.C. Chang in 1958 to provide an algebraic proof of the completeness of Lukasiewicz axioms for infinite valued logic. These algebras appear in the literature under different names: Bricks, Wajsberg algebra, CN-algebra, bounded commutative BCK-algebras, etc. The purpose of this paper is to give a topological lattice completion of semisimple MV-algebras. To this end, we characterize the complete atomic center MV-algebras and semisimple algebras as subalgebras of a cube. Then we define the $\delta$-completion of semisimple MV-algebra and construct the $\delta$-completion. We also study some important properties and extension properties of $\delta$-completion.

  • PDF

GENERALIZED REIDEMEISTER NUMBER ON A TRANSFORMATION GROUP

  • Park, Ki Sung
    • Korean Journal of Mathematics
    • /
    • v.5 no.1
    • /
    • pp.49-54
    • /
    • 1997
  • In this paper we study the generalized Reidemeister number $R({\varphi},{\psi})$ for a self-map $({\varphi},{\psi}):(X,G){\rightarrow}(X,G)$ of a transformation group (X, G), as an extension of the Reidemeister number $R(f)$ for a self-map $f:X{\rightarrow}X$ of a topological space X.

  • PDF

Some good extensions of compactness

  • Kim, Yong-Chan;Abbas, S.E.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.614-620
    • /
    • 2003
  • The aim of this paper is to introduce good definitions of compactness, almost compactness, near compactness, weak compactness, and S-closedness in fuzzy topological spaces in Sostak s sense. These compactness related concepts are defined for arbitrary fuzzy sets and some of their properties studied.

INTUITIONISTIC FUZZY MINIMAL SPACES

  • Min, Won-Keun
    • The Pure and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.259-269
    • /
    • 2009
  • We introduce the concept of intuitionistic fuzzy minimal structure which is an extension of the intuitionistic fuzzy topological space. And we introduce and study the concepts of intuitionistic fuzzy M -continuity, intuitionistic fuzzy Mopen mappings and several types of intuitionistic fuzzy minimal compactness on intuitionistic fuzzy minimal spaces.

  • PDF

Structural Aspects in the Theory of Random Walk

  • Heyer, H.
    • Journal of the Korean Statistical Society
    • /
    • v.11 no.2
    • /
    • pp.118-130
    • /
    • 1982
  • Random walks as specia Markov stochastic processes have received particular attention in recent years. Not only the applicability of the theory already developed but also its extension within the frame work of probability measures on algebraic-topological structures such as semigroups, groups and linear spaces became a new challenge for research work in the field. At the same time new insights into classical problems were obtained which in various cases lead to a more efficient presentation of the subject. Consequently the teaching of random walks at all levels should profit from the recent development.

  • PDF

SOME EXTENSION ON HESITANT FUZZY MAXIMAL, MINIMAL OPEN AND CLOSED SETS

  • M. SANKARI;C. MURUGESAN
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.265-272
    • /
    • 2023
  • This article presents a novel notion of hesitant fuzzy cleanly covered in hesitant fuzzy topological spaces;moreover two strong hesitant fuzzy separation axioms are investigated. Based on fuzzy maximal open sets few properties of hesitant fuzzy cleanly covered are obtained. By dint of hesitant fuzzy minimal open and fuzzy maximal closed sets two strong hesitant fuzzy separation axioms are extended.

AN EXTENSION OF MULTI-VALUED QUASI-GENERALIZED SYSTEM

  • Kum, Sangho;Kim, Won Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.703-709
    • /
    • 2012
  • Recently, Kazmi and Khan [7] introduced a kind of equilibrium problem called generalized system (GS) with a single-valued bi-operator F. Next, in [10], the first author considered a generalization of (GS) into a multi-valued circumstance called the multi-valued quasi-generalized system (in short, MQGS). In the current work, we provide an extension of (MQGS) into a system of (MQGS) in general settings. This system is called the generalized multi-valued quasi-generalized system (in short, GMQGS). Using the existence theorem for abstract economy by Kim [8], we prove the existence of solutions for (GMQGS) in the framework of Hausdorff topological vector spaces. As an application, an existence result of a system of generalized vector quasi-variational inequalities is derived.

Extension of Group Interaction Modelling to predict chemorheology of curing thermosets

  • Altmann, Nara;Halley, Peter J.;Nicholson, Timothy M.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.91-102
    • /
    • 2009
  • This paper describes an extension of viscoelastic Group Interaction Modelling (GIM) to predict the relaxation response of linear, branched and cross-linked structures. This model is incorporated into a Monte Carlo percolation grid simulation used to generate the topological structure during the isothermal cure of a gel, so enabling the chemorheological response to be predicted at any point during the cure. The model results are compared to experimental data for an epoxy-amine systems and good agreement is observed. The viscoelastic model predicts the same exponent power-law behaviour of the loss and storage moduli as a function of frequency and predicts the cross-over in the loss tangent at the percolation condition for gelation. The model also predicts the peak in the loss tangent which occurs when the glass transition temperature surpasses the isothermal cure temperature and the system vitrifies.

On The Reflection And Coreflection

  • Park, Bae-Hun
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 1978
  • It is shown that a map having an extension to an open map between the Alex-androff base compactifications of its domain and range has a unique such extension. J.S. Wasileski has introduced the Alexandroff base compactifications of Hausdorff spaces endowed with Alexandroff bases. We introduce a definition of morphism between such spaces to obtain a category which we denote by ABC. We prove that the Alexandroff base compactification on objects can be extended to a functor on ABC and that the compact objects give an epireflective subcategory of ABC. For each topological space X there exists a completely regular space $\alpha$X and a surjective continuous function $\alpha$$_{x}$ : Xlongrightarrow$\alpha$X such that for each completely regular space Z and g$\in$C (X, Z) there exists a unique g$\in$C($\alpha$X, 2) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\alpha$$_{x}$, $\alpha$X) is called a completely regularization of X. Let TOP be the category of topological spaces and continuous functions and let CREG be the category of completely regular spaces and continuous functions. The functor $\alpha$ : TOPlongrightarrowCREG is a completely regular reflection functor. For each topological space X there exists a compact Hausdorff space $\beta$X and a dense continuous function $\beta$x : Xlongrightarrow$\beta$X such that for each compact Hausdorff space K and g$\in$C (X, K) there exists a uniqueg$\in$C($\beta$X, K) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\beta$$_{x}$, $\beta$X) is called a Stone-Cech compactification of X. Let COMPT$_2$ be the category of compact Hausdorff spaces and continuous functions. The functor $\beta$ : TOPlongrightarrowCOMPT$_2$ is a compact reflection functor. For each topological space X there exists a realcompact space (equation omitted) and a dense continuous function (equation omitted) such that for each realcompact space Z and g$\in$C(X, 2) there exists a unique g$\in$C (equation omitted) with g=g$^{\circ}$(equation omitted). Such a pair (equation omitted) is called a Hewitt's realcompactification of X. Let RCOM be the category of realcompact spaces and continuous functions. The functor (equation omitted) : TOPlongrightarrowRCOM is a realcompact refection functor. In [2], D. Harris established the existence of a category of spaces and maps on which the Wallman compactification is an epirefiective functor. H. L. Bentley and S. A. Naimpally [1] generalized the result of Harris concerning the functorial properties of the Wallman compactification of a T$_1$-space. J. S. Wasileski [5] constructed a new compactification called Alexandroff base compactification. In order to fix our notations and for the sake of convenience. we begin with recalling reflection and Alexandroff base compactification.

  • PDF

Topologically free actions and purely infinite $C^{*}$-crossed products

  • Jeong, Ja-A
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.167-172
    • /
    • 1994
  • For a given $C^{*}$-dynamical system (A, G, .alpha.) with a G-simple $C^{*}$-algebra A (that is A has no proper .alpha.-invariant ideal) many authors have studied the simplicity of a $C^{*}$-crossed product A $x_{\alpha{r}}$ G. In [1] topological freeness of an action is shown to guarantee the simplicity of the reduced $C^{*}$-crossed product A $x_{\alpha{r}}$ G when A is G-simple. In this paper we investigate the pure infiniteness of a simple $C^{*}$-crossed product A $x_{\alpha}$ G of a purely infinite simple $C^{*}$-algebra A and a topologically free action .alpha. of a finite group G, and find a sufficient condition in terms of the action on the spectrum of the multiplier algebra M(A) of A. Showing this we also prove that some extension of a topologically free action is still topologically free.

  • PDF