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A Completion of Semi—simple MV -algebra

Abstract

The notion of MV-algebra was introduced by C.C. Chang in 1958 to provide an
algebraic proof of the completeness of Lukasiewicz axioms for infinite valued logic.
These algebras appear in the literature under different names: Bricks, Wajsberg
algebra, CN-algebra, bounded commutative BCK-algebras, etc.

The purpose of this paper is to give a topological lattice completion of semisimple
MV-algebras. To this end, we characterize the complete atomic center MV-algebras
and semisimple algebras as subalgebras of a cube. Then we define the J-completion
of semisimple MV-algebra and construct the dJ-completion. We also study some

important properties and extension properties of &-completion.

0. Introduction

In his classical paper [3], C.C. Chang invented the notion of MV-algebra in order to
provide an algebraic proof of the completeness theorem of Lukasiewicz axioms for
infinite valued propositional logic.

The Boolean algebra (ring) is the corresponding algebra for the classical two-valued
logic. In Boolean algebras(=commutative idempotent unitary ring), ring—operations -+,
-, 0 and 1 define lattice-operations(=distributive complemented lattice) so that it forms
a Boolean lattice. As in Boolean algebra, MV- algebraic-operations +, -, —, 0 and 1
define lattice—operations so that it forms a bounded lattice (actually, distributive lattice).
By using the fact that the set C(A) of all idempotent elements of a MV-algebra A
forms a Boolean subalgebra, it is easy to prove that the category of Boolean algebras is
a coreflective subcategory of the category of all MV-algebras and their homomorphims.
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A Completion of Semi-simple MV-algebra

Unlike Boolean algebra, not all MV-algebras are semi-simple.

In [1, 2], Belluce and [6] Hoo have developed MV-algebras in its algebraic properties
and topological properties, in particular, they have characterized the semi-simple
MV-algebra in terms of many different notions; In terms of Bold algebra of Fuzzy
subset [1], Archimedeanness, quasi-locallyness, and the lattice-completeness and sub-
direct product of unit interval MV-algebra [2]. Hoo has shown that A is semi-simple iff
the space of maximal ideals of A is dense in the space of prime ideals [6]. In this
paper, we first show that if A is a complete MV~algebra and its C(A) is atomic then A
is isomorphic to a product of a cube and HA( m), where cube means a product of unit
interval MV-algebras and [JA(m) is a product of finite MV-algebras A(m)’s. After
the proof that any complete atomic one is an atomic center, it follows that if A is
complete nonatomic and A has at least one atom, and if A=BXC (Belluce's

decomposition: Theorem 9 [2]) then the atomic part B=]lA(m) and atomless part C=
I* (a cube). It follows immediately that if A is completely atomic then A is the direct
product [1A(m) for some m EACZ (see Theorem 4.2 and the below remark [2]).
Secondly we introduce an intrinsic topology on a semi-simple MV-algebra so that it is
a topological MV-algebra, we show that every semi-simple MV-algebra A has a
completion 6(A) which is a complete and atomic center (or a compact MV-algebra)
and 8(A) contains A as a dense subset. Futhermore A is a subdirect product of the
type H] a X 1HA(m), of MV-algebra where J. is a dense subalgebra of the unit
interval MV-algebra . Finally, we investigate the further properties of the &—

completion, for example, 8(A) is an extension universal property.

[Preliminaries]

An algebra A=(4, +, -, —, 0, 1) is called an MV-algebra if the following equations
are satisfied; for x, y, z€A

(i) x+ty=yt=x,
(i) (x+y)+z=x+(+2),

(i) x-y= (x+ ),
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(iv) x+0=x and x+1=1,
(v) 0=1and 1=0,
i) (x+y)+y= (y+x)+x.

If we define that for x, y €EA xVy=x+ xy and xAy=x(x+y) then (4, V, A0, 1)
is a bounded distributive lattice.

For all basic terminologies of MV-algebra, we refer to [1, 2, 3]. For an MV~ algebra
A, C(A) is called the center of A, its element is called a center element of A. For a €
A, | a denotes the subset {zE€A|lx <a} and dually 1a denotes {(x EAla < x}.

1. Atomic MV -algebras

Let A be an MV-algebra. For x, vy €EA ‘y covers x means that x {y and there is no
element between x and y. If a covers 0 then a is called an atom of A. In this section
we show first that if A is an atomic complete MV-algebra, then the center C(A) must
be a power-set Boolean subalgebra, namely, C(A) is an atomic complete Boolean
algebra.

We first prove the following theorem.

Theorem 1.1 For an MV-algebra A, the following are equivalent; for x, y €A
(i) y covers x,

(i) xy covers 0,

(iii) 1 covers x+ .

Proof. (i) = (ii). Assume that 0<{ # < xy for some u €A. Then we have x < x+u <
x+ jcy=x\/y=y. We claim that x <x+u <y which is absurd. Indeed, if x=x+u then
u=0, because 0< x and #< xy<zx imply u=0 by Theorem 1.14 [3], which is a
contradiction. Thus x < x+u. Now if x+u=y then x(x+u)= xvy, ie, xAzx=xy. On

the other hand, we have u(?yﬁ}, 1e., xAu=u. Thus ;y=u which is also a

contradiction. So we have x+u <y. Hence we have x < x+u <y which is absurd to ().
Thus (ii) holds.
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(ii) = (i). Soppose that x < z <y for some z €A. Then we have 0< xz< xy. If
0=xz then d(x,z)=x2z=0, since x < z. Thus x=z Similarly, if xz= xy then
x+ E=x+,—3_). Since z and ; are both bounded by }, we have ;=;, Le., z=y.

Hence 0¢ xz < ?cy which is a contradiction to (ii).
(ii) © (@ii). (i) and (@ii) are simply dual each other. The proof is complete. [
The following corollary is immediate.

Corollary [2]. If an MV-algebra has no atoms then it densely ordered.
The following lemma is immediate from Theorem 5 [2].

Lemma 1.2. If A is a complete MV-algebra then so is C(A4), ie, C(A) is a complete
Boolean subalgebra of A.

Lemma 1.3. Let A be a complete MV-algebra. For SCA with S=@, if c=sup S™,
then ¢ € C(A), where S'={x €A |xAs=0 for all sES}.

Proof. For any s €S, sAc=sAsup S'=sup(sA S*)=0. Thus ¢ €S*. Since S* is
always an ideal of A, 2c €S*, and hence 2c=c. [

Proposition 1.4. If A is a complete MV-algebra and ay is an atom of A, then there
exists a unique atom ¢ of C(A) such that a < co.

Proof. We have either

(1) {a)*=1{0} or
(i) {ao}*=1{0)

For case (i), if y €A with y=0 then acAy=ao because apAy=ay or awAy=0 since ay
is an atom of A. If yAa=0 then yE{a}"*. Hence yE {a. Thus Ta=A—1{0}. Now let

ao=inf{c€CX)| as < c}. Then o is an atom of C(A).

For case (ii), firstly we note that {ao}C{ao}™ . Let d={a}"*. Then do EC(A)N 1 ao.
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oy ¢

Clearly do E{ao)**. So we have {a}'* = | do. Now let ep=inf (C(A)N 1 ao). Evidently eo
€C(A)N Tap. We claim that e is an atom of C(A) and a < co. Indeed, if there exists
eo € C(A) such that 0 < ey < o< dy then ep E{ao\}“= { do is an ideal of A. Hence since
ao is an atom of A we have either eocAav=ao or esNay=ep or eoNao=0 which implies
a0 < ep or ep < ag or eo E{ao}™, respectively. Thus we have ep=cy or eo=ap or eoS{a}",
respectively. But none of which is possible, because ey < ¢y, ep=ap implies ey=co, and if
eo E{ao}™ then ey=0.

For the uniqueness of such atoms, if ¢ and ¢ are two atoms of C(A) and a < @, @
< ¢1 then a < ciAcz=0 and hence ay=0, a contradiction. []

The following corollary is obvious from lemma 1 and the above theorem:

Corollary 15. If A is a complete atomic MV-algebra, then C(A) is a power set
Boolean algebra.

For a decomposition of an MV-algebra A, the center C(A)#2 plays a very important
role, as in lattice theory.

If C(A) is atomic and C(A)=2 for an MV-algebra A, A is said to be atomic center.
If C(A)={0, 1}=2, then we say that A is irreducible.
2. Decompositions of complete atomic center MV -algebras

It is well known that for an ideal P of an MV-algebra A, P is a prime ideal iff for
x, vy €A, x\y €P implies x €P or y €P. It is also known that the quotient MV-

algebra A/P is linearly ordered for any prime ideal P of A [4].

- The following two lemmas are obvious:

Lemma 2.1. If P is a prime ideal of A and a €C(A) then either a €EP or acsP.

Moreover, a EP iff a < P.

Lemma 2.2. If A is a complete MV-algebra, and if xAy=0 and c=sup {ao}" for 0=x
#]1, 0=y=]1 then c €C(A) and 0=c=1.
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In the following lemma we prove first that the ideal generated by ‘@ is prime in a
complete MV-algebra A but it will turn out that it is actually a maximal ideal in the
latter.

Lemma 2.3. If A is a complete MV-algebra, and C(4)#2 and if a is an atom of C(A),

then lz is a prime ideal of A. Furthermore, the ideal | a is linearly ordered.

Proof. Clearly l—a is a proper ideal of A. Assume that | @ is not prime. Namely,
there exists two elements x and vy in A such that xAye | abut x& | aand y& | a
Then axAay=(0 by Theorem 3.1 [2]. Note that ax+0 since ax=0 implies aVx=a,
and hence ¥ <a. Similarly ay+#0. Further ax*] since a+ x=0 implies a=0 and
similarly ay # 1. Further ax # 1 since ‘a+ x=0 implies ‘a=0 and similarly ay+1.
By Lemma 22, c=sup{a}*€C(A) and 0%*c+1. Since ars{ay}’, we have
0 < ax <c; since ZE{ay}l, we have a< c, ie, c<a. Note that c#a because if
S0, ax<c=a and hence ax=a’x <aa=0. It follows that c= C(A) and 0< c<a,

which is a contradiction to the fact that « is an atom of C(A).

The 2nd part of the lemma follows from the first isomorphism Theorem; Let
f: A—»I,=la by f(x)=ax. (See Theorem 7,8 [2]). Then the kernel of f is

I = | a. Thus the quotient of A modulo | & is isomorphic to |a. O

Remark. For a prime ideal P of A, there exists at most one atom a of C(A) such that

a€P. For, if P contains two such atoms a; and a; of C(4) (a;¥ay), then

@V ay=a;+a;=1€P.

Proposition 2.4. If B is a complete subalgebra of the unit interval MV-algebra I (=0,
1), then B is either I itself or a finite MV-algebra A(m) for some m€Z".

Proof. If B has an atom b, say its order is m, then evidently B is isomorphic to
A(m). Now assume that B does not have atoms. Then B must be I. For, suppose I—
B @. Then for any x €I-B, let bo=sup { | xNB} and bi=inf { 1 xN B} then b covers
bo in B since by < x < b1 and x €B. By Theorem 1.1, B has an atom. This is a
contradiction. []
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Lemma 2.5. Let A be a complete atomic center MV-algebra. Let a be an atom of
C(A). Then the MV-algebra I[.=<la, +, -, ~, 0, a> is isomorphic to either A(m)
for some m € Z or the unit interval MV-algebra.

Proof. Since A is complete, so is I,. Thus I, is a complete semi-simple (actually,
simple) linearly ordered MV-algebra. It follows that I, is Archimedean and hence /. is
locally finite (Theorem 31, 32 [1]).

We have A/I, is locally finite, since A/l = I, It follows that I, is embedded

into I. (see the remark on page 2 [2]). By Proposition 2.4. I, is isomorphic to either
A(m) for some m€Z"' or I. OJ

Remark. In the above proof, since A/I, is locally finite we have I,= | a is

actually a maximal ideal of A by (Theorem 4.7 [3]).

Proposition 2.6. Let A be a complete atomic center MV-algebra and {a,e<sI"} be
the set of all atoms of C(A). Then A is isomorphic to } {7, eel} where I.= i, for
cach ~e&l

Proof. Define ¢: A—III, by @(x)=<a,x) .er for each x€A, and define
¢ I11,~A by ¢ x>)=sup {x,| asI'} for each element <x,> of IlI, Then
clearly ¢ and ¢ are both MV~homomorphisms. By Theorem 5 [2] it is easy to see that
¢ cp=1id4 and @-¢=1id . O

In summary, the following theorem has completely characterized complete atomic
center MV -algebras.

Theorem 2.7. If A has a complete atomic center MV-algebra, then A is isomorphic to

a direct product of a cube and [I{A(m) | me Z*}, where cube means a product of I's.
In [2], it is shown that if A is a complete nonatomic MV-algebra and if 4 has at

least one atom, then A=BXC where B is complete atomic, C is complete atomless
MV -algebra. Furthermore if A is atomic, then A=B and C is disappeared as follows:
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Corollary 2.8. If A is a complete atomic MV-algebra with C(A)#2, then
A=TIA(m).

3. The o-completion of semi—simple MV -algebra

By a topological MV -algebra, we mean a pair (4, r) where A is an MV-algebra and
r is a Hausdorff topology on A such that all operations +, + and — are continuous.

Clearly every topological MV-algebra (4, r) is also a topological distributive lattice
and C(A) is a closed subset of A.

The following lemma is well-known [5]:
Lemma 3.1. If (4, r) is a compact topological MV-algebra, then

(i) A is a complete lattice
(ii) C(A) is a compact Boolean algebra, i.e., it is a power set Boolean algebra.

By Theorem 2.7, we then have the following lemma:

Lemma 3.2. If (A4, ) is a compact MV-algebra with C(A4)#2, then
A=Px [I{A(m) | me ACZ ™} where the cube I? is the connected atomless part of A
for some cardinal A, and [[{A(m)} is the totally disconnected atomic part of A for

some subset A of Z 7.

Now we turn to characterize semi-simple algebras as subalgebras of a cube.

First of all, we note that the unit interval algebra (I, &, ®, —, 0, 1) is a topological
MV-algebra under the ordinal topology. For x, y €I, x®y=min{l, x+y}=%{l1+x+y—]|1

—x—yl} and x=1-—x are continuous and hence x®y is continuous, where +, — are

the real operations of I.

let A be a semi-simple MV-algebra and let H=hom(A4, I) be the set of all
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homomorphisms of A to the I

Clearly, the cube = H{I ¢l feH} has the compact topology 7, its product
topology, for which (IH, 7 ) is a compact MV-algebra.

Let e A—I7 be the evaluation map: e(x)=<Ax)> for each x €A. Since A is
semi-simple, e is injective and hence A is embedded into I”. Then A= e(A)CT?.
Since ( e(A),7ry4) is a topological MV-subalgebra of ! under the relative topology

Toay Of 7.

It us known [5] that the closure of subalgebra B of a topological universal algebra A
is again a subalgebra.

Setting 8(A)= I{e(A)) where I'is the closure operation of I, we call &(A) the ¢
-completion of A.

Evidently, 8(A) is a compact Hausdorff MV-algebra under its relative topology and

hence &(A) is a complete atomic center MV-algebra.

Again by Theorem 27, we have that O(A) has the following type: &(A)
2% x TIKA(m) | me ACZ T}, where H,CH.

Let A be a semi-simple MV-algebra. Then A is embedded into I?. Since
A=(e(A),7,4), A has the topology 74 so that (A,74)=(e(A),7,4a) is isomorphic

algebraically and topologically. z4 is called the intrinsic topology of A.
Then we have the following Theorem:

Theorem 3.3. Any semi-simple MV-algebra A is densely embedded into
I*x TI{A(m) | me AZ*} under its intrinsic topology, where H,CH, a subset /\ of

Z%. And |H,| + Il = | Hl where H=hom(A, I). Furthermore, A is a subdirect
product of /g{] ¢ X I1A(m) where J;is a dense subalgebra of I for each f< H,.
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Proof. The first part of the theorem already has been shown in the above. For the

second part, let 8(A) be the O-completion of A and A <& e(A) c&A)CI?. For

each feH and the f* projection oy of I ontol, setting p{e(A))=]; for each
f€H,, it is easy to see that J; is a dense subalgebra of I. Note that for the atomic
part 1IA(m), A has a exactly same copy of subalgebra as Jl1A(m) because
p..(e(A)) = A(m) for each me A, p, is the m™ projection of I/ onto A(m). [ ‘

Examples. We give several typical examples of dense subalgebras of I.

1. I itselt.

2. The subalgebra of all rationals in I.

3. The subalgebra of all algebraic numbers in I.

4. The subalgebra of dyadic numbers in [.

5. The subalgebra of all numbers of type r+s+/2 in I for all rationals r and s.

Here we study some important properties of the d&-completion; among those, a useful
property in an extension property. From this property one can easily show that the
category of a complete and atomic center MV-algebras is an epireflective subcategory of
the category of all semi-simple MV-algebras.

Lemma 34. Let A, B be two semi-simple MV-algebras and 74 zp are their intrinsic

topologies, respectively. If ¢: A— B is an MV-homomorphism then the

o: (A, t4)— (B, rp) is continuous.

Proof. Since (B, rp) is embedded into I, where G=hom(B, I) trp is the initial
topology with respective to the source Gg={glglg e G}. And r, is also the initial
topology with respect to Hy={flalf€ H}. Since glg> ¢=H, for each g H, and

hence glp° @ is continuous. Thus ¢ is continuous. [J

Lemma 3.5. If A is a complete atomic center MV-algebra, then (A, 74) is a compact

MV -algebra.
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Proof. Since A=I"x IIA(m) by Theorem 33, A is closely-embedded into I7
Therefore (A, t4) is compact. {J

The following lemma is easy to prove:

Lemma 36. If f: A—~]l{A;liel} is a map and if p;/ is a homomorphism for all

projection p;: IJA;—A; for all i€/ then fis a homomorphism.
Now we prove the extension properties of the J-completion.

Theorem 3.7. Let A be a semi-simple MV-algebra and e: A — 8(A) be the
embedding. For each complete atomic center MV-algebra B and a homomorphism
f: A — B, there exists a homomorphism F: 8 A) — B such that F-e=7f

Proof. Let H=hom(A, I); G=hom(B, I) and let ¢: A — &(A) C I= H{Ifl feH}

and ¢ : B— & (B) C I°={I)geG} be the evaluation maps of A and B, respectively.

Note that e and ¢ are point-separating, i.e., they are both injective.

For a homomorphism f: A — B, we have the situation:
A= eA) c Il{1,| hem

fl
B¢ (B c [l{1,| g=G).

We define a map —]“:th-*HIg as follows: for each x< [l (?(x)>g=g- Ax),
ie, @g( f(x))= pgy(x) where p, and g, are the %" and the g” projection of [I7,
and HIg onto I, and I, for each h=H and g< G, respectively. First, we show
that f is a homomorphism. Indeed dg f=1g is a homomorphism for all g= G. By

Lemma 3.6, f is a homomorphism.

Secondly, we show that f(e(A))Ce' (B). For each ac=A, ¢,( f(e(a))= py(ela))
=g Ra)=q,(e'(A@)) for all g=G. Thus F(e(a))=-¢e (Ka)).
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Thirdly, we prove that f(8(A)) C &' (B). Since B is a complete atomic center,
(B, tp) is compact, and hence &' (B) is closed (or compact) in [/, Further, 7 is

continuous, -so we have that fF(8(A)) = F(I{e(A))C I'(fle(A) I (e (B)=¢(B),
where I' and I are the closure operation of the product spaces III, and [1I o

respectively.

Finally, setting F=¢& "}( | &4)), we show that F: 8(A)—B is a required

extension of f Indeed F-ela)=¢ ' ( f] 8(A))Nela))=¢€ "1((Aa)))=FRa) for al
as A. The proof is complete. [
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