• Title/Summary/Keyword: three-point boundary value

Search Result 67, Processing Time 0.027 seconds

THREE-POINT BOUNDARY VALUE PROBLEMS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.773-785
    • /
    • 2012
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solutions to a general class of three-point boundary value problems for a coupled system of nonlinear fractional differential equations. The differential operator is taken in the Caputo fractional derivatives. By using Green's function, we transform the derivative systems into equivalent integral systems. The existence is based on Schauder fixed point theorem and contraction mapping principle. Finally, some examples are given to show the applicability of our results.

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

Positive Solutions for Three-point Boundary Value Problem of Nonlinear Fractional q-difference Equation

  • Yang, Wengui
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.419-430
    • /
    • 2016
  • In this paper, we investigate the existence and uniqueness of positive solutions for three-point boundary value problem of nonlinear fractional q-difference equation. Some existence and uniqueness results are obtained by applying some standard fixed point theorems. As applications, two examples are presented to illustrate the main results.

THREE POINT BOUNDARY VALUE PROBLEMS FOR THIRD ORDER FUZZY DIFFERENTIAL EQUATIONS

  • Murty, M.S.N.;Kumar, G. Suresh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.101-110
    • /
    • 2006
  • In this paper, we develop existence and uniqueness criteria to certain class of three point boundary value problems associated with third order nonlinear fuzzy differential equations, with the help of Green's functions and contraction mapping principle.

  • PDF

THIRD ORDER THREE POINT FUZZY BOUNDARY VALUE PROBLEM UNDER GENERALIZED DIFFERENTIABILITY

  • Prakash, P.;Uthirasamy, N.;Priya, G. Sudha
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.791-805
    • /
    • 2014
  • In this article, we investigate third order three-point fuzzy boundary value problem to using a generalized differentiability concept. We present the new concept of solution of third order three-point fuzzy boundary value problem. Some illustrative examples are provided.

EXISTENCE OF SOLUTIONS FOR THREE-POINT BOUNDARY VALUE PROBLEM AT RESONANCE

  • Zhang, Huixing;Liu, Wenbin;Zhang, Jianjun;Chen, Taiyong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1257-1264
    • /
    • 2009
  • In this paper, we study the existence of solutions for three-point boundary value problem at resonance by using the continuation theorem of Mawhin. Some known results are improved.

  • PDF

MONOTONE ITERATION SCHEME FOR IMPULSIVE THREE-POINT NONLINEAR BOUNDARY VALUE PROBLEMS WITH QUADRATIC CONVERGENCE

  • Ahmad, Bashir;Alsaedi, Ahmed;Garout, Doa'a
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1275-1295
    • /
    • 2008
  • In this paper, we consider an impulsive nonlinear second order ordinary differential equation with nonlinear three-point boundary conditions and develop a monotone iteration scheme by relaxing the convexity assumption on the function involved in the differential equation and the concavity assumption on nonlinearities in the boundary conditions. In fact, we obtain monotone sequences of iterates (approximate solutions) converging quadratically to the unique solution of the impulsive three-point boundary value problem.

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY VALUE PROBLEMS

  • Miao, Chunmei;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.895-902
    • /
    • 2009
  • In this paper, the singular three-point boundary value problem $$\{{{u"(t)\;+\;f(t,\;u)\;=\;0,\;t\;{\in}\;(0,\;1),}\atop{u(0)\;=\;0,\;u(1)\;=\;{\alpha}u(\eta),}}\$$ is studied, where 0 < $\eta$ < 1, $\alpha$ > 0, f(t,u) may be singular at u = 0. By mixed monotone method, the existence and uniqueness are established for the above singular three-point boundary value problems. The theorems obtained are very general and complement previous know results.

  • PDF

TRIPLE POSITIVE SOLUTIONS OF SECOND ORDER SINGULAR NONLINEAR THREE-POINT BOUNDARY VALUE PROBLEMS

  • Sun, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.763-772
    • /
    • 2010
  • This paper deals with the existence of triple positive solutions for the nonlinear second-order three-point boundary value problem z"(t)+a(t)f(t, z(t), z'(t))=0, t $\in$ (0, 1), $z(0)={\nu}z(1)\;{\geq}\;0$, $z'(\eta)=0$, where 0 < $\nu$ < 1, 0 < $\eta$ < 1 are constants. f : [0, 1] $\times$ [0, $+{\infty}$) $\times$ R $\rightarrow$ [0, $+{\infty}$) and a : (0, 1) $\rightarrow$ [0, $+{\infty}$) are continuous. First, Green's function for the associated linear boundary value problem is constructed, and then, by means of a fixed point theorem due to Avery and Peterson, sufficient conditions are obtained that guarantee the existence of triple positive solutions to the boundary value problem. The interesting point is that the nonlinear term f is involved with the first-order derivative explicitly.