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THIRD ORDER THREE POINT FUZZY BOUNDARY VALUE

PROBLEM UNDER GENERALIZED DIFFERENTIABILITY

P. PRAKASH∗, N. UTHIRASAMY AND G. SUDHA PRIYA

Abstract. In this article, we investigate third order three-point fuzzy
boundary value problem to using a generalized differentiability concept.
We present the new concept of solution of third order three-point fuzzy

boundary value problem. Some illustrative examples are provided.
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1. Introduction

Fuzzy differential equations is a natural way to model dynamical systems un-
der possibility uncertainty. In [14], Puri and Ralescu introduced the concept of
H-derivative of a fuzzy number valued function. Bede [4] proved that the fuzzy
two-point boundary value problem is not equivalent to the integral equation ex-
pressed by Green’s function under Hukuhara differentiability [16] (generalization
of the H-derivative) in the fuzzy differential equation and using fuzzy Auman-
type integral in the integral equation. Satio [15] gave a new representation of
fuzzy numbers with bounded supports and proved that fuzzy number means a
bounded continuous curve in the two-dimensional metric space. Under this new
structure and certain conditions, Prakash et.al [13] proved a third order three-
point boundary value problem of fuzzy differential equation is equivalent to a
corresponding fuzzy integral equation. Bede [5] defined the generalized differen-
tiability of fuzzy number valued functions. Two point boundary value problem
under generalized differentiability is considered in [9]. In [12] the existence and
uniqueness of solution for a first-order linear fuzzy differential equation with
impulses subject to periodic boundary conditions are obtained. Recently an al-
gorithm for the solution of second order fuzzy initial value problems with fuzzy
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coefficients, fuzzy initial values and fuzzy forcing functions is given in [2]. Ana-
lytical and numerical solution of fuzzy initial value problems under generalized
differentiability are considered in [1, 3]. However it should be emphasized that
most of the works in this direction are mainly concerned with fuzzy initial value
problem, periodic boundary value problem and two point boundary value prob-
lem there has been no attempts made to study third order three-point fuzzy
boundary value problem under generalized differentiability.

2. Preliminaries

Let us denote by RF the class of fuzzy subsets u : R → [0, 1], satisfying the
following properties:

(1) u is normal, that is, there exist x0 ∈ R with u(x0) = 1.
(2) u is convex fuzzy set, that is,

u(λx+ (1− λ)y) ≥ min{u(x), u(y)}, ∀x, y ∈ R, ∀λ ∈ [0, 1].

(3) u is upper semi-continuous on R.

(4) {x ∈ R|u(x) > 0} is compact, where Ā denotes the closure of A.

Then RF is called the space of fuzzy numbers. For 0 < r ≤ 1, set [u]r = {s ∈
R|u(s) ≥ r} and [u]0 = cl{s ∈ R|u(s) > 0}. Then the r- level set [u]r is a
non-empty compact interval for all 0 ≤ r ≤ 1. The following Theorem gives the
parametric form of a fuzzy number.

Theorem 2.1 ([7, 8]). The necessary and sufficient conditions for (u(r), u(r))
to define the parametric form of a fuzzy number are as follows:

(1) u(r) is a bounded monotonic increasing (non-decreasing) left-continuous
function ∀r ∈ (0, 1] and right-continuous for r = 0.

(2) u(r) is a bounded monotonic decreasing (non-increasing) left-continuous
function ∀r ∈ (0, 1] and right-continuous for r = 0.

(3) u(r) ≤ u(r), 0 ≤ r ≤ 1.

We refer to u and u as the lower and upper branches on u, respectively. For
u ∈ RF , we define the length of u as: len(u) = u − u. A crisp number α is
simply represented by u(r) = u(r) = α (0 ≤ r ≤ 1) is called singleton. For
u, v ∈ RF and α ∈ R, the sum u+v and the scalar multiplication αu are defined
by u+ v = ((u+ v)(r), (u+ v)(r)) = (u(r) + v(r), u(r) + v(r)),

αu =

{
(αu(r), αu(r)), α ≥ 0,
(αu(r), αu(r)), α < 0.

For u, v ∈ RF , we say u = v if and only if u(r) = v(r) and u(r) = v(r).
The metric structure is given by the Hausdorff distanceD : RF×RF → R+∪{0},
by

D(u, v) = sup
r∈[0,1]

max{| u(r)− v(r) |, | u(r)− v(r) |}.
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Definition 2.2. Let x, y ∈ RF . If there exists z ∈ RF such that x = y+ z then
z is called the H-difference of x, y and it is denoted x⊖ y.
In this paper the sign “⊖” stands always for H-difference and x⊖ y ̸= x+(−1)y
in general. Usually we denote x+(-1)y by x-y, while x ⊖ y stands for the H-
difference. In the sequel, we fix I = [a, c], for a, c ∈ R.

Remark 2.1. A function F is said to be a fuzzy number valued function if its
range is a space of fuzzy numbers.

Definition 2.3. Let F : I → RF be a fuzzy number valued function. If there
exists an element F ′(t0) ∈ RF such that for all h > 0 sufficiently near to 0,
F (t0 + h)⊖ F (t0), F (t0)⊖ F (t0 − h) exist and the limits (in the metric D)

lim
h→0+

F (t0 + h)⊖ F (t0)

h
and lim

h→0+

F (t0)⊖ F (t0 − h)

h

exist and equal to F ′(t0), then F said to be differentiable at t0 ∈ (a, c). If t0
is the end points of I, then we consider the corresponding one-sided derivative.
Here the limits are taken in the metric space (RF , D).

In this paper we considered the following third order three-point fuzzy boundary
value problem

y′′′(t) = f(t, y(t), y′(t), y′′(t)), (1)

with boundary conditions

y(a) = y(b) = y(c) = 0̃, (2)

where 0̃ = (0, 0) ∈ RF and f : I × RF × RF × RF → RF is continuous fuzzy
function.

3. Generalized fuzzy derivatives

The definition of the Hukuhara differentiability is a straightforward general-
ization of the Hukuhara differentiability of a set-valued function. Bede and Gel
in [5] showed that if F (t) = c.g(t) where c is a fuzzy number and g : [a, b] → R+

is a function with g′(t) < 0, then F is not Hukuhara differentiable. To avoid
this difficulty, they introduced a more general definition of derivative for fuzzy
function.

Definition 3.1. Let F : I → RF and fix t0 ∈ (a, c). If there exists an element
F ′(t0) ∈ RF such that for all h > 0 sufficiently near to 0, F (t0+h)⊖F (t0), F (t0)⊖
F (t0 − h) exist and the limits (in the metric D)

lim
h→0+

F (t0 + h)⊖ F (t0)

h
and lim

h→0+

F (t0)⊖ F (t0 − h)

h

exist and equal to F ′(t0), then F said to be (1)-differentiable at t0 and it is
denoted by D1

1F (t0). If for all h > 0 sufficiently near to 0, F (t0) ⊖ F (t0 +
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h), F (t0 − h)⊖ F (t0) exist and the limits (in the metric D)

lim
h→0+

F (t0)⊖ F (t0 + h)

−h
and lim

h→0+

F (t0 − h)⊖ F (t0)

−h
= F ′(t0)

exist and equal to F ′(t0), then F is said to be (2)-differentiable and it is denoted
by D1

2F (t0). If t0 is the end points of I, then we consider the corresponding
one-sided derivative.

Theorem 3.2 ([6, 10]). Let F : I → RF and let F (t) = (f(t, r), g(t, r)) for each
r ∈ [0, 1].

(1) If F is (1)-differentiable then f(t, r) and g(t, r) are differentiable func-
tions and D1

1F (t) = (f ′(t, r), g′(t, r)).
(2) If F is (2)-differentiable then f(t, r) and g(t, r) are differentiable func-

tions and D1
2F (t) = (g′(t, r), f ′(t, r)).

Definition 3.3. Let F : I → RF and let n,m ∈ {1, 2}. If D1
nF exists on a

neighborhood of t0 as a fuzzy number valued function and it is (m)-differentiable
at t0 as a fuzzy number valued function, then F is said to be (n,m)-differentiable
at t0 ∈ I and is denoted by D2

n,mF (t0).

Theorem 3.4 ([10]). Let F : I → RF , D1
1F : I → RF and D1

2F : I → RF and
let F (t) = (f(t, r), g(t, r)).

(1) If D1
1F is (1)-differentiable, then f ′(t, r) and g′(t, r) are differentiable

functions and D2
1,1F (t) = (f ′′(t, r), g′′(t, r)).

(2) If D1
1F is (2)-differentiable, then f ′(t, r) and g′(t, r) are differentiable

functions and D2
1,2F (t) = (g′′(t, r), f ′′(t, r)).

(3) If D1
2F is (1)-differentiable, then f ′(t, r) and g′(t, r) are differentiable

functions and D2
2,1F (t) = (g′′(t, r), f ′′(t, r)).

(4) If D1
2F is (2)-differentiable, then f ′(t, r) and g′(t, r) are differentiable

functions and D2
2,2F (t) = (f ′′(t, r), g′′(t, r)).

Remark 3.1. For each of these four derivatives, we have again two possibilities.
D1

1(D
1
1(D

1
1F (t))), D1

2(D
1
1(D

1
1F (t))),

D1
1(D

1
2(D

1
1F (t))), D1

2(D
1
2(D

1
1F (t))),

D1
1(D

1
1(D

1
2F (t))), D1

2(D
1
1(D

1
2F (t))) and

D1
1(D

1
2(D

1
2F (t))), D1

2(D
1
2(D

1
2F (t))).

Definition 3.5. Let F : I → RF and let n,m, l ∈ {1, 2}. If D1
nF and D2

n,mF

exist on a neighborhood of t0 as fuzzy number valued functions and D2
n,mF is

(l)-differentiable at t0 as a fuzzy number valued function, then F is said to be
(n,m, l)-differentiable at t0 ∈ I and it is denoted by D3

n,m,lF (t0).

Theorem 3.6 ([10]). Let F : I → RF D1
nF : I → RF , D2

n,mF : I → RF for
n,m ∈ {1, 2}and let F (t) = (f(t, r), g(t, r)).

(1) If D2
1,1F is (1)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable

functions and D3
1,1,1F (t) = (f ′′′(t, r), g′′′(t, r)).
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(2) If D2
1,1F is (2)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable

functions and D3
1,1,2F (t) = (g′′′(t, r), f ′′′(t, r)).

(3) If D2
1,2F is (1)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable

functions and D3
1,2,1F (t) = (g′′′(t, r), f ′′′(t, r)).

(4) If D2
1,2F is (2)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable

functions and D3
1,2,2F (t) = (f ′′′(t, r), g′′′(t, r)).

(5) If D2
2,1F is (1)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable

functions and D3
2,1,1F (t) = (g′′′(t, r), f ′′′(t, r)).

(6) If D2
2,1F is (2)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable

functions and D3
2,1,2F (t) = (f ′′′(t, r), g′′′(t, r)).

(7) If D2
2,2F is (1)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable

functions and D3
2,2,1F (t) = (f ′′′(t, r), g′′′(t, r)).

(8) If D2
2,2F is (2)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable

functions and D3
2,2,2F (t) = (g′′′(t, r), f ′′′(t, r)).

4. Three-point fuzzy boundary value problem

In this section, we consider fuzzy boundary value problem (1)-(2) with gen-
eralized differentiability and introduce a new class of solutions.

Definition 4.1. Let y : I → RF and let n,m, l ∈ {1, 2}. If D1
ny,D

2
n,my and

D3
n,m,ly exist on I as fuzzy number valued functions,D3

n,m,ly(t) = f(t, y(t), D1
ny(t),

D2
n,my(t)) for all t ∈ I and y(a) = y(b) = y(c) = 0̃, then y is said to be a (n,m, l)

solution for the fuzzy boundary value problem (1)-(2) on I,

Definition 4.2. Let n,m, l ∈ {1, 2} and let I1 be an interval such that I1 ⊂ I.
If y, D1

ny,D
2
n,my and D3

n,m,ly exist on I1 as fuzzy number valued functions and

D3
n,m,ly(t) = f(t, y(t), D1

ny(t), D
2
n,my(t)) for all t ∈ I1, then y is said to be a

(n,m, l) solution for the fuzzy differential equation (1) on I1.

Definition 4.3. Let ni,mi, li ∈ {1, 2} and i ∈ {1, 2, 3, 4}. If there exists a fuzzy
number valued function y : I → RF such that

y(t) =

 y1(t) if t ∈ (a, b)
y2(t) if t ∈ (b, c)
y1(t) = y2(t) if t ∈ {a, b, c}

where y1 : [a, b] ∪ {c} → RF and y2 : [b, c] ∪ {a} → RF are the fuzzy number

valued functions with y1(c) = y2(a) = 0̃ and if there exist t1 ∈ (a, b) and

t2 ∈ (b, c) such that y1(a) = y1(b) = y2(b) = y2(c) = 0̃, y1 is a (n1,m1, l1)-
solution and a (n2,m2, l2)-solution of the equation (1) on (a, t1) and on (t1, b)
respectively and y2 is a (n3,m3, l3)-solution and a (n4,m4, l4) solution of the
equation (1) on (b, t2) and on (t2, c) respectively. Then we say that y is a
generalized solution of the fuzzy boundary value problem (1)-(2).
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By Theorem 3.2, Theorem 3.4 and Theorem 3.6, we can translate the fuzzy
boundary value problem (1)-(2) to a system of ordinary boundary value problems
hereafter, called corresponding (n,m,l)-system for problem (1)-(2). Therefore,
possible system of ordinary boundary value problems for the problem (1)-(2) are
as follows:
(1,1,1)-system:

y′′′(t, r) = f(t, y(t, r), D1
1y(t, r), D

2
1,1y(t, r)),

y′′′(t, r) = f(t, y(t, r), D1
1y(t, r), D

2
1,1y(t, r)),

y(a, r) = 0, y(a, r) = 0,
y(b, r) = 0, y(b, r) = 0,
y(c, r) = 0, y(c, r) = 0.

 (3)

(1,1,2)-system:

y′′′(t, r) = f(t, y(t, r), D1
1y(t, r), D

2
1,1y(t, r)),

y′′′(t, r) = f(t, y(t, r), D1
1y(t, r), D

2
1,1y(t, r)),

with the boundary condition as in (3).
(1,2,1)-system:

y′′′(t, r) = f(t, y(t, r), D1
1y(t, r), D

2
1,2y(t, r)),

y′′′(t, r) = f(t, y(t, r), D1
1y(t, r), D

2
1,2y(t, r)),

with the boundary condition as in (3).
(1,2,2)-system:

y′′′(t, r) = f(t, y(t, r), D1
1y(t, r), D

2
1,2y(t, r)),

y′′′(t, r) = f(t, y(t, r), D1
1y(t, r), D

2
1,2y(t, r)),

with the boundary condition as in (3).
(2,1,1)-system:

y′′′(t, r) = f(t, y(t, r), D1
2y(t, r), D

2
2,1y(t, r)),

y′′′(t, r) = f(t, y(t, r), D1
2y(t, r), D

2
2,1y(t, r)),

with the boundary condition as in (3).
(2,1,2)-system:

y′′′(t, r) = f(t, y(t, r), D1
2y(t, r), D

2
2,1y(t, r)),

y′′′(t, r) = f(t, y(t, r), D1
2y(t, r), D

2
2,1y(t, r)),

with the boundary condition as in (3).
(2,2,1)-system:

y′′′(t, r) = f(t, y(t, r), D2
2y(t, r), D

2
2,2y(t, r)),

y′′′(t, r) = f(t, y(t, r), D1
2y(t, r), D

2
2,2y(t, r)),

with the boundary condition as in (3).
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(2,2,2)-system:

y′′′(t, r) = f(t, y(t, r), D1
2y(t, r), D

2
2,2y(t, r)),

y′′′(t, r) = f(t, y(t, r), D1
2y(t, r), D

2
2,2y(t, r)),

with the boundary condition as in (3).
Our strategy of solving (1)-(2) is based on the selection of derivative type in the
fuzzy boundary value problem. We first choose the type of solution and translate
problem (1)-(2) to the corresponding system of boundary value problems. Then,
we solve the obtained boundary value problems system. Finally we find such a
domain in which the solution and its derivatives have valid level sets according
to the type of differentiability and using the Representation theorem [11] we can
construct the solution of the fuzzy boundary problem (1)-(2).

Remark 4.1. If y is the (n,m, l)-solution of (1) on I1 ⊆ I for m,n, l ∈ {1, 2},
then y is (n,m, l)-differentiable on I1 and y(t) is not (n,m, l)-differentiable in
t0 ∈ (I\I1).

5. Examples

Example 5.1. Consider the following third order three-point fuzzy boundary
value problem:

y′′′(t) = (r, 2− r), (4)

y(0) = y(1) = y(2) = 0̃. (5)

If y is a (1,1,1)-solution of (4)-(5), then

y′(t) = (y′(t, r), y′(t, r)), y′′(t) = (y′′(t, r), y′′(t, r)), y′′′(t) = (y′′′(t, r), y′′′(t, r)),

y(0) = (y(0, r), y(0, r)) = 0̃, y(1) = (y(1, r), y(1, r)) = 0̃ and y(2) = (y(2, r),

y(2, r)) = 0̃ and satisfies the (1,1,1)-system associated with (4). Similarly for
other system. On the other hand, by direct calculation, the corresponding so-
lution of the (1,1,1), (1,2,2), (2,1,2), and (2,2,1) systems has necessarily the
following expression

y(t) =

(
r

6
(t3 − 3t2 + 2t),

2− r

6
(t3 − 3t2 + 2t)

)
. (6)

By the Representation Theorem [11] and Theorem 2.1, we see (y(t, r), y(t, r)) rep-

resents a valued fuzzy number when t3−3t2+2t ≥ 0. Hence (6) represents fuzzy
number for t ∈ [0, 1] or t = 2. Now we find the range of (1,1,1),(1,2,2),(2,1,2)
and (2,2,1)-solutions of the differential equation (4) separately.
(1,1,1)-solution
The (1)-derivative of (6) in that case is given by:

y′(t) =

(
r

6
(3t2 − 6t+ 2),

2− r

6
(3t2 − 6t+ 2)

)
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and it is a fuzzy number when t ∈ [0, 1
3 (3 −

√
3] or t = 2. Then it is again

(1)-differentiable

y′′(t) = (r(t− 1), (2− r)(t− 1))

and it is a fuzzy number when t = 2. By the Definition 3.5, D3
1,1,1y(t) does not

exist. Hence y in (6) is not a (1,1,1)-solution of the fuzzy differential equation
(4).
(1, 2, 2)-solution

y′(t) = ( r6 (3t
2−6t+2), 2−r

6 (3t2−6t+2)) is a fuzzy number when t ∈ [0, 1
3 (3−

√
3]

or t = 2. y′′(t) = ((2−r)(t−1), r(t−1)) and y′′′(t) = (r, 2−r) are fuzzy numbers

when t ∈ [0, 1
3 (3 −

√
3)]. Hence y(t), D1

1y(t), D2
1,2y(t) and D3

1,2,2y(t) are valid

fuzzy numbers for t ∈ [0, 1
3 (3−

√
3] and y in (6) is a (1,2,2)-solution of the fuzzy

differential equation (4) on [0, 1
3 (3−

√
3].

(2, 1, 2)-solution
y′(t) = ( 2−r

6 (3t2 − 6t + 2), r
6 (3t

2 − 6t + 2)), y′′(t) = ((2 − r)(t − 1), r(t − 1))

and y′′′(t) = (r, 2 − r) are fuzzy numbers when t ∈ [ 13 (3 −
√
3), 1]. Hence

y(t), D1
2y(t), D2

2,1y(t) and D3
2,1,2y(t) are valid fuzzy numbers for t ∈ [ 13 (3 −√

3), 1] and y in (6) is a (2,1,2)-solution of the fuzzy differential equation (4) on

[ 13 (3−
√
3), 1].

(2, 2, 1)-solution
y′(t) = ( 2−r

6 (3t2 − 6t+ 2), r
6 (3t

2 − 6t+ 2)) is a fuzzy numbers when t ∈ [ 13 (3−√
3), 1]. y′′(t) = (r(t − 1), (2 − r)(t − 1)) is a fuzzy number when t = 1. By the

Definition 3.5, D3
2,2,1y(t) does not exist. Hence y in (6) is not a (2,2,1)-solution

of the fuzzy differential equation (4).
The solution of the remaining four systems (1,1,2), (1,2,1), (2,1,1), and (2,2,2)
has the following form

y(t) =

(
2− r

6
(t3 − 3t2 + 2t),

r

6
(t3 − 3t2 + 2t)

)
. (7)

By the Representation Theorem [11] and Theorem 2.1, we see (y(t, r), y(t, r))

represents a valued fuzzy number t3 − 3t2 + 2t ≤ 0. Hence (7) represents fuzzy
real number for t = 0 or t ∈ [1, 2]. Now we find the range of (1,1,2), (1,2,1),
(2,1,1), and (2,2,2)-solutions of the differential equation (4) separately.
(1, 1, 2)-solution

y′(t) = ( 2−r
6 (3t2−6t+2), r

6 (3t
2−6t+2)) is a fuzzy number when t ∈ [1, 1

3 (3+
√
3)].

y′′(t) = ((2− r)(t− 1), r(t− 1)) is a fuzzy number when t = 1. By the Definition
3.5, D3

1,1,2y(t) does not exist. Hence y in (7) is not a (1,1,2)-solution of the fuzzy
differential equation (4).
(1, 2, 1)-solution
y′(t) = ( 2−r

6 (3t2 − 6t + 2), r
6 (3t

2 − 6t + 2)), y′′(t) = (r(t − 1), (2 − r)(t −
1)) and y′′′(t) = (r, 2 − r) are fuzzy numbers when t ∈ [1, 1

3 (3 +
√
3)]. Hence

y(t), D1
1y(t), D2

1,2y(t) and D3
1,2,1y(t) are valid fuzzy numbers for t ∈ [1, 1

3 (3 +
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√
3)] and y in (7) is a (1,2,1)-solution of the fuzzy differential equation (4) on

t ∈ [1, 1
3 (3 +

√
3)].

(2, 1, 1)-solution
y′(t) = ( r6 (3t

2 − 6t + 2), 2−r
6 (3t2 − 6t + 2)) is a fuzzy number when t = 0 or

t ∈ [ 13 (3+
√
3), 2]. y′′(t) = (r(t−1), (2−r)(t−1)) and y′′′(t) = (r, 2−r) are fuzzy

numbers when t ∈ [ 13 (3 +
√
3), 2]. Hence y(t), D1

2y(t), D2
2,1y(t) and D3

2,1,1y(t)

are valid fuzzy numbers for t ∈ [ 13 (3 +
√
3), 2] and y in (7) is a (2,1,1)-solution

of the fuzzy differential equation (4) on t ∈ [ 13 (3 +
√
3), 2].

(2, 2, 2)-solution
y′(t) = ( r6 (3t

2 − 6t + 2), 2−r
6 (3t2 − 6t + 2)) is a fuzzy number when t = 0 or

t ∈ [ 13 (3 +
√
3), 2]. y′′(t) = ((2 − r)(t − 1), r(t − 1)) is a fuzzy number when

t = 0. By the Definition 3.5, D3
2,2,2y(t) does not exist. Hence y in (7) is not a

(2,2,2)-solution of the fuzzy differential equation (4).
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t=0.4HupperL

t=0.6HlowerL

t=0.6HupperL

Figure 1. y
1
(t, r) and y1(t, r)) for different t.
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Figure 2. y
2
(t, r) and y2(t, r) for different t ∈ [1, 2].
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Figure 3. Lower branch of generalized solution different r.
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Figure 4. Upper branch of generalized solution different r.

There exists a fuzzy number valued function y : [0, 2] → RF such that

y(t) =

 y1(t) if t ∈ (0, 1)
y2(t) if t ∈ (1, 2)
y1(t) = y2(t) if t ∈ {0, 1, 2}

(8)

where y1(t) =
(
r
6 (t

3 − 3t2 + 2t), 2−r
6 (t3 − 3t2 + 2t)

)
for all t ∈ [0, 1] ∪ {2} and

y2(t) =
(
2−r
6 (t3 − 3t2 + 2t), r

6 (t
3 − 3t2 + 2t)

)
for all t ∈ [1, 2] ∪ {0} are fuzzy

number valued functions and there exist 1
3 (3−

√
3) and 1

3 (3 +
√
3) such that y1

is a (1, 2, 2) solution and (2, 1, 2) solution of the equation (4) on [0, 1
3 [3 −

√
3)]

and on [ 13 (3−
√
3), 1] respectively, y2 is a (1, 2, 1) solution and (2, 1, 1) solution

of the equation (4) on [1, 1
3 (3+

√
3)] and on [ 13 (3+

√
3), 2] respectively and y1 y2
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satisfy the boundary conditions (5). Therefore y in (8) is a generalized solution
of the fuzzy boundary value problem (4)-(5). y1 and y2 are shown in Figure
1 and Figure 2 respectively for different values of t. From these figures we see
that y1 and y2 are fuzzy number valued functions. In Figure 3 and Figure 4,
lower and upper branch of the generalized solution y are shown respectively for
different values of r.

Example 5.2. Consider the following third order three-point boundary value
problem:

y′′′(t) = (r − 1, 1− r), (9)

y(0) = y(0.5) = y(1) = 0̃ (10)

By direct calculation, the corresponding solution of the (1,1,1), (1,2,2), (2,1,2),
and (2,2,1) systems has necessarily the following expression

y(t) =

(
r − 1

12
(2t3 − 3t2 + t),

1− r

12
(2t3 − 3t2 + t)

)
. (11)

By the Representation Theorem [11] and Theorem 2.1, we see (y(t, r), y(t, r))

represents a valued fuzzy number 2t3 − 3t2 + t ≥ 0. Hence (11) represents fuzzy
number for t ∈ [0, 1

2 ] or t = 1. Now we find the range of (1,1,1),(1,2,2),(2,1,2)
and (2,2,1)-solutions of the fuzzy differential equation (9) separately.
(1,1,1)-solution
The (1)-derivative of (9) in that case is given by:

y′(t) =

(
r − 1

12
(6t2 − 6t+ 1),

1− r

12
(6t2 − 6t+ 1)

)
and it a fuzzy number when t ∈ [0, 1

6 (3 −
√
3] or t = 1. Then it is again (1)-

differentiable

y′′(t) =

(
r − 1

12
(12t− 6),

1− r

12
(12t− 6)

)
and it is a fuzzy number when t = 1. By the Definition 3.5, D3

1,1,1y(t) does not
exist. Hence y in (11) is not a (1,1,1)-solution of the fuzzy differential equation
(9).
(1, 2, 2)-solution
y′(t) = ( r−1

12 (6t2−6t+1), 1−r
12 (6t2−6t+1)) is a fuzzy number when t ∈ (0, 1

6 (3−√
3]) or t = 1. y′′(t) = ( 1−r

12 (12t−6), r−1
12 (12t−6)) and y′′′(t) = (r−1, 1− r) are

fuzzy numbers when t ∈ [0, 1
6 (3−

√
3)]. Hence y(t), D1

1y(t), D
2
1,2y(t) and D3

1,2,2y(t)

are valid fuzzy numbers for t ∈ [0, 1
6 (3−

√
3] and y (11) is (1,2,2)-solution of the

fuzzy differential equation (9) on [0, 1
6 (3−

√
3)].

(2, 1, 2)-solution
y′(t) = ( 1−r

12 (6t2 − 6t+ 1), r−1
12 (6t2 − 6t+ 1)), y′′(t) = ( 1−r

12 (12t− 6), r−1
12 (12t−

6)) and y′′′(t) = (r − 1, 1 − r) are fuzzy numbers when t ∈ [ 16 (3 −
√
3), 1

2 ].

Hence y(t), D1
2y(t), D2

2,1y(t) and D3
2,1,2y(t) are valid fuzzy numbers for t ∈
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[ 16 (3−
√
3), 1

2 ] and y (11) is (2,1,2)-solution of the fuzzy differential equation (9)

on t ∈ [ 16 (3−
√
3), 1

2 ].
(2, 2, 1)-solution
y′(t) = ( 1−r

12 (6t2 − 6t+ 1), r−1
12 (6t2 − 6t+ 1)) is a fuzzy number when t ∈ [ 16 (3−√

3), 1
2 ]. y

′′(t) = ( r−1
12 (12t− 6), 1−r

12 (12t− 6)) is a fuzzy number when t = 1
2 . By

the Definition 3.5, D3
2,2,1y(t) does not exist. Hence y in (11) is not a (2,2,1)-

solution of the fuzzy differential equation (11).
The solution of the remaining four systems (1,1,2), (1,2,1), (2,1,1), and (2,2,2)
has the following form

y(t) = (
1− r

12
(2t3 − 3t2 + t),

r − 1

12
(2t3 − 3t2 + t)). (12)

By the Representation Theorem [11] and Theorem 2.1, we see (y(t, r), y(t, r))

represents a valued fuzzy number 2t3 − 3t2 + t ≤ 0. Hence (12) represents fuzzy
real number for t = 0 or t ∈ [ 12 , 1]. Now we find the range of (1,1,2), (1,2,1),
(2,1,1), and (2,2,2)-solutions of the fuzzy boundary value problem separately.
(1, 1, 2)-solution
y′(t) = ( 1−r

12 (6t2−6t+1), r−1
12 (6t2−6t+1)) is a fuzzy number when t ∈ [ 12 ,

1
6 (3+√

3)]. y′′(t) = ( 1−r
12 (12t− 6), r−1

12 (12t− 6))is a fuzzy number when t = 1
2 . By the

Definition 3.5, D3
1,1,2y(t) does not exist. Hence y in (12) is not a (1,1,2)-solution

of the fuzzy differential equation (9).
(1, 2, 1)-solution
y′(t) = ( 1−r

12 (6t2 − 6t + 1), r−1
12 (6t2 − 6t + 1)) y′′(t) = ( r−1

12 (12t − 6), 1−r
12 (12t −

6)) and y′′′(t) = (r − 1, 1 − r) are fuzzy numbers when t ∈ [ 12 ,
1
6 (3 +

√
3)].

Hence y(t), D1
1y(t), D2

1,2y(t) and D3
1,2,1y(t) are valid fuzzy numbers for t ∈

[ 12 ,
1
6 (3+

√
3)] and y (12) is (1,2,1)-solution of the fuzzy differential equation (9)

on t ∈ [ 12 ,
1
6 (3 +

√
3)].

(2, 1, 1)-solution
y′(t) = ( r−1

12 (6t2−6t+1), 1−r
12 (6t2−6t+1)) is a fuzzy number when t = 0 or t ∈

[ 16 (3+
√
3), 1]. y′′(t) = ( r−1

12 (12t−6), 1−r
12 (12t−6)) and y′′′(t) = (r−1, 1− r) are

fuzzy numbers when t ∈ [ 16 (3+
√
3), 1].Hence y(t), D1

2y(t), D
2
2,1y(t) and D3

2,1,1y(t)

are valid fuzzy numbers for t ∈ [ 16 (3 +
√
3), 1] and y (12) is (2,1,1)-solution of

the fuzzy differential equation (9) on t ∈ [ 16 (3 +
√
3), 1].

(2, 2, 2)-solution
y′(t) = ( r−1

12 (6t2 − 6t + 1), 1−r
12 (6t2 − 6t + 1)) is a fuzzy number when t = 0 or

t ∈ [ 16 (3 +
√
3), 1]. y′′(t) = ( 1−r

12 (12t− 6), r−1
12 (12t− 6)) is a fuzzy number when

t = 0. By the Definition 3.5, D3
2,2,1y(t) does not exist. Hence y in (12) is not a

(2,2,2)-solution of the fuzzy differential equation (9).
There exists a fuzzy number valued function y : [0, 1] → RF such that

y(t) =

 y1(t) if t ∈ (0, 1
2 )

y2(t) if t ∈ ( 12 , 1)
y1(t) = y2(t) if t ∈ {0, 1

2 , 1}
(13)
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Figure 5. y
1
(t, r) and y1(t, r) for different t.
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Figure 6. y
2
(t, r) and y2(t, r) for different t.
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Figure 7. Lower branch of generalized solution for different r.

where y1(t) =
(
r−1
12 (2t3 − 3t2 + t), 1−r

12 (2t3 − 3t2 + t)
)
for all t ∈ [0, 1

2 ]∪{1} and

y2(t) =
(
1−r
12 (2t3 − 3t2 + t), r−1

12 (2t3 − 3t2 + t)
)
for all t ∈ [ 12 , 1] ∪ {0} are fuzzy

number valued function and there exist 1
6 (3−

√
3) and 1

6 (3+
√
3) such that y1 is

a (1, 2, 2)-solution and (2, 1, 2)-solution of the equation (9) on [0, 1
6 [3−

√
3)] and

on [ 16 (3−
√
3), 1

2 ] respectively, y2 is a (1, 2, 1)-solution and (2, 1, 1)-solution of the
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Figure 8. Upper branch of generalized solution for different r.

equation (9) on [ 12 ,
1
6 (3+

√
3)] and on [ 16 (3+

√
3), 1] respectively and y1 y2 satisfy

the boundary conditions (10). Therefore y in (13) is a generalized solution of
the fuzzy boundary value problem (9)-(10). y1 and y2 are shown in Figure 5 and
Figure 6 respectively for different values of t. From these figures we see that y1
and y2 are fuzzy number valued functions. In Figure 7 and Figure 8, lower and
upper branch of the generalized solution y are shown respectively for different
values of r.
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