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THE METHOD OF QUASILINEARIZATION AND
A THREE-POINT BOUNDARY VALUE PROBLEM

PauL W. ELOE AND YANG GAO

ABSTRACT. The method of quasilinearization generates a mono-
tone iteration scheme whose iterates converge quadratically to a
unique solution of the problem at hand. In this paper, we apply
the method to two families of three-point boundary value problems
for second order ordinary differential equations: Linear boundary
conditions and nonlinear boundary conditions are addressed inde-
pendently. For linear boundary conditions, an appropriate Green’s
function is constructed. For nonlinear boundary conditions, we
show that these nonlinearities can be addressed similarly to the
nonlinearities in the differential equation.

1. Introduction

In this paper, we shall first apply the method of quasilinearization to
the two-point boundary value problem (BVP),

(1.1) 2"(t) = f(t,z(t)), tel0,1],

(1.2) z(0) =a, z(1)==z(1/2),

where f : [0,1] x R — R2 is continuous. We shall obtain a Green’s
function associated to the BVP, (1.1), (1.2); we shall then indicate how
the method of quasilinearization applies to the BVP, (1.1), (1.2).

We shall then apply the method of quasilinearization to a BVP with
nonlinear boundary conditions,

(1.3) 2'(t) = f(t,z(t)), te€]0,1],

(1.4) z(0) =a, z(1) = g(x(1/2)).
We shall assume the nonlinearity, g, is continuous.
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The method of quasilinearization has recently been studied and ex-
tended extensively. It is generating a rich history beginning with the
works by Bellman and Bellman and Kalba [1, 2]. Lakshmikantham,
Leela, Vatsala, and many co-authors have extensively developed the
method and have applied the method to a wide range of problems. We
refer the reader to the recent work by Lakshmikantham and Vatsala
[14] and the extensive bibliography found there. The method has been
applied to two-point boundary value problems for ordinary differential
equations and we refer the reader to the papers, [19, 17, 18, 8, 6, 7.
We also point out the Cabada and Nieto and co-authors ([3, 4, 5], for
example) have recently been providing new and interesting variations
and applications of the method.

Multipoint boundary value problexs for second order ordinary differ-
ential equations have also been receiving considerable attention lately.
Kiguradze and Lomtatidze [13], and Lomtatidze [15, 16] have studied
closely related problems. Gupta and co-authors ([9, 10, 11}, for exam-
ple) have been thoroughly studying problems related to the BVP, (1.1),
(1.2). We point out that the three point boundary conditions considered
here can be extended to other multipoint point conditions in many ways.
Under suitable conditions, the methods we develop here will apply. We
consider the specific conditions (1.2) or (1.4) for the sake of simplicity
in exposition.

2. The BVP, (1.1), (1.2)

We begin by establishing the Green’s function of the BVP, (1.1),
(1.2). Define

_JGits), 0<s<1)2,
(2.1) Glt,s) = {GQ(t, s), 1/2<s <1,

where

~t, 0<t<s<l,
t8) = = =
it ) {—& 0<s<t<1,

and

Golt, ) Ws—1)t, 0<t<s<l,
PTT ) s+ (2s—1)t, 0<s<t<l.
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It is a straightforward calculation to show that z(t) is solution of
(1.1), (1.2), if and only if

z € C[0,1] and z(t) = a +/0 G(t, s)f(s,z(s))ds.

THEOREM 2.1. Assume that f : [0,1] x R — R? is continuous and
bounded. Then the BVP, (1.1), (1.2), has a solution.

Proof. The proof is a standard application of Schauder’s fixed point
theorem. O

We now indicate how to employ the quasilinearization method. We
shall leave the details to the next section. We only point out here that
since G(t,s8) < 0 on (0,1) x (0,1), the details are completely standard.

DEFINITION 2.1, Let o, 3 € C?[0,1]. We say « is a lower solution of
the BVP, (1.1), (1.2), if

' (t) > f(t,alt)), te][0,1],
a(0) <a, ofl) <afl1/2).
We say 3 is an upper solution of the BVP, (1.1), (1.2), if
BY(t) < f(t.8(1), tel0.1],
B(0) = a, B(1) > B(1/2).

THEOREM 2.2, Assume f is continuous and assume that f; > 0 on
[0,1] x R. Assume 3 and « are upper and lower solutions of the BVP,
(1.1), (1.2) respectively. Then

aft) <B(t), te [0,1].
Proof. Define h(t) = a(t) — 5(t). For the sake of contradiction, sup-
pose h(t) > 0 for some ¢ € (0,1]. Note that 4(0) < 0. Let
to = inf{r €10,1] : h(r) = h(t),0 <t < 1}.

By continuity, 0 < #p. Moreover, by the definition of upper and lower
solutions, h(1/2) > h(1). So, ty € (0,1). Thus,

K'(to) = o (to) — B"(to) Z f(to, alt)) — f(t0, B(t)) > 0,
since f; > 0. We obtain a contradiction since h(fy) is a local maximum
and h”(tg) < 0. Therefore,

alt) < B(t), 0<t<1. =



322 Paul W. Eloe and Yang Gao
COROLLARY 2.1. Assume f is continuous and assume that fr > 0 on

[0,1] x R. Then solutions of the BVP, (1.1), (1.2), are unique.

Proof. A solution is an upper (lower) solution. a

THEOREM 2.3. Assume f is continuous on [0,1] X R. Assume that
there exist an upper solution, 3, and a lower solution, o, of the BVP,
(1.1), (1.2). Moreover, assume that

alt) < B(), telol].
Then, there exists a solution x, of the BVP, (1.1), (1.2), satisfying
alt) <z(t) < 6(#), telol].
Proof. Truncate f(t,x) as follows:

f6,8)+ 5% ifa(t) > B();
F(t,z) = q f(t,2) if a(t) < (t) < B(t);
(ta)+1+[:c al if 2(t) < a(t)

Since F is bounded and continuous on [0, 1] xR, it follows from Theorem
2.1 that there exists a solution, z, of the BVP, z”(f) = F(t,z(t)), 0 <
t < 1, with the boundary conditions, (1.2). The proof is complete once
we show

alt) < z(t) £ B), te]o,1].

This argument is analogous to the proof of Theorem 2.2. Set h(f) =
a(t) — z(t). Assume the inequalitiy is false and define %y as in the
proof of Theorem 2.2. Argue that ¢y € (0,1) and then argue that the
sign of h”(ty) gives a contradiction. This argument is standard in the
applications of upper and lower solutions and we refer you to [12]. O

The development of the quasilinearization method follows in a stan-
dard way. Since many of the standard detajls will be specifically ad-
dressed in the next section, we shall state the following theorem without
proof.

THEOREM 2.4. Assume f, fz, fze are continuous on [0, 1] xR. Assume
fz >0 o0n[0,1] x R. Moreover, assume

(2.2) fea(t, ) 20, (t,2) €[0,1] x R.
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Assume g Is a lower solution of the BVP, (1.1), (1.2), and assume
that By is an upper solution of the BVP, (1.1), (1.2). Then there ex-
ist monotone sequences, {an}, {On}, that converge monotonically and
quadratically in the space of continuous functions on [0,1] to the unique
solution, z, of the BVP, (1.1), (1.2).

3. The BVP, (1.3), (1.4)

We shall model the development of Section 3 by the development of
Section 2. Here, we supply the details.

THEOREM 3.1. Assume that f : [0,1] x R — R? is continuous and
bounded. Also, assume that g : R — R is continuous and bounded.
Then the BVP, (1.3), (1.4) has a solution.

Proof. Again, the proof is a standard application of the Schauder
fixed point theorem once an appropriate fixed point operator is devel-
oped. Let G(¢,s) denote the usual Green’s function for the conjugate or
Dirichlet BVP. In particular, set

t(s—1), 0<t<s<l,
3.1 G(t,s) = s =
(3:1) (t.9) {s(t—l), 0<s<t<l.
It is a straightforward calculation to show that x(t) is a solution of

the BVP, (1.3), (1.4), if and only if € C[0, 1] and

1
2(t) = a(1 — 1) + g(2(1/2))t + /0 Gt ) f (s, 3(s))ds. R

DEFINITION 3.1. Let o, 8 be such that o, 3” are continuous. We say
a is a lower solution of the BVP, (1.3), (1.4), if

o'(t) 2 f(t,0(t), te[0,1],
a(0) <a, a(l) <g(a(l1/2)).
We say (3 is an upper solution of the BVP, (1.3), (1.4), if
B7(t) < f(t,6(2), telo,1],
B0) Za, A1) = g(B(1/2)).
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THEOREM 3.2. Assume f is continuous and assume that f; > 0 on
[0,1] x R. Assume g is continuous and assume that 0 < ¢’ < 1 on R.
Assume (3 and a are upper and lower solutions of the BVP, (1.3), (1.4)
respectively. Then

a(t) < B(t), te [0,1].

Proof. The proof for this theorem is analogous to the one in Theorem
2.2. The condition, 0 < ¢’ < 1 on R, is employed to argue that fp < 1
where tg has been defined in the proof of Theorem 2.2. O

COROLLARY 3.1. Assume f is continuous and assume that f, > 0 on

[0,1] x R. Assume g is continuous and assume that 0 < g’ < 1 on R.
Then solutions of the BVP, (1.3), (1.4), are unique.

THEOREM 3.3. Assume f is continuous on [0,1] x R. Assume g Is
continuous on R and assume that 0 < ¢’ <1 on R. Assume that there
exist an upper solution, 8, and a lower solution, «, of the BVP, (1.3),
(1.4). Moreover, assume that

alt) < B(#), telo,1].
Then, there exists a solution z, of the BVP, (1.3), (1.4), satisfying
alt) < a(t) < B(t), te0,1]
Proof. Define F' as in the proof of Theorem 2.3. Define a truncation,
G, of g by
9(8(1/2)) if z > B(1/2);
G(z) = 4 g(z) if a(1/2) <z < B8(1/2);
g(a(1/2)) if z < a(1/2).
By Theorem 3.1 there exists a solution, = of the BVP,
Z'(t) = F(t,z(t)), tel0,1],
z(0) =a, z(1)=G(z(1/2)).
The proof is complete when we show
at) <z(t) < 8(), 0<t<1,

and the proof is completely analogous to the proof of Theorem 2.3 once
the observation from the proof of Theorem 3.2 is employed. We point
out that G satisfies 0 < G’ <1 on [x(1/2), 5(1/2)]. O]
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THEOREM 3.4. Assume f, f, fzs are continuous on [0, 1] xR. Assume
fz > 0 on [0,1] x R and assume (2.2) is satisfied. Assume g¢,¢',¢" are
continuous on R. Assume 0 < ¢’ < 1 on R and assume

(3.2) d'(z)<0, zeR

Assume o is a lower solution of the BVP, (1.3), (1.4), and assume that
Bo is an upper solution of the BVP, (1.3), (1.4). Then there exist mono-
tone sequences, {an}, {On}, that converge in the space of continuous
functions on [0,1] to the unique solution, z, of the BVP, (1.3), (1.4).
Moreover, the convergence is quadratic.

Proof. First note that for any ¢ € [0,1] and z,y € R,

(3.3) ftz) > ft,y) + f(6v) (2 —v)
follows from (2.2) and from (3.2) it follows that
(34) 9(z) < g9(y) + 9 ¥)(z —v)-

Define two linearizations, F' and G, of f.
F(t,z; a0, 60) = f(t, 00) + fo(t, Go)(z — o),
G(t, %3 0o) = f(t, Bo) + f=(t, fo) (= — o).
Define two linearizations, k and h, of g.
h(x(1/2); a0, Bo) = g(a0(1/2)) + g'(Bo(1/2))(2(1/2) — (1/2)),

h((1/2); Bo) = 9(Bo(1/2)) + ' (6o(1/2))(2(L/2) — Bo(1/2))-
We shall now consider two BVPs in addition to BVP, (1.3), (1.4). Con-
sider the BVP,

(3.5) z"(t) = F(t,z;00,0), te€]0,1],
(3.6) z(0) =a, z(1) = h(z(1/2); a0, bo)-
In addition, comsider the BVP,

(3.7) a”(t) = G(t,z;60), te€[0,1],
(3.8) 2(0) =a, o(1) = h(z(1/2); bo)-

The outline of the proof is as follows: First, show aq is a lower solution
of the BVP, (3.5), (3.6), and show [y is an upper solution of the BVP,
(3.5), (3.6). Apply Theorem 3.3 and obtain a solution, as, of the BVP,
(3.5), (3.6), satisfying

(3.9) ap(t) < ai(t) < Go(t). telo,1].
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Note that Theorem 3.3 applies since ' = ¢/(50(1/2)). Second, show oy is
a lower solution of the BVP, (3.7), (3.8), and show (3, is an upper solution
of the BVP, (3.7), (3.8). Apply Theorem 3.3 to obtain a solution, 8, of
the BVP, (3.7), (3.8), satisfying

(3.10) ap(t) < Bi(t) £ Bo(t), tel0,1].

Finally, show o3 is a lower solution of the BVP, (1.3), (1.4), and show
(1 is an upper solution of the BVP, (1.3), (1.4). Apply Theorem 3.2 and
obtain the inequality,

(3.11) a1(t) < B1(t), tel0,1].
In particular,
ap(t) Lo (t) < G1(t) < Holt), t€][o,1].
One continues this process by induction to obtain
an(t) < an1(t) < Braa(t) < Bu(t), t€[0,1], n=0,1,...,

where o, satisfies the BVP,

z'(t) = F(t,z;an, ), t€]0,1],

z(0) = a, (1) = h(=(1/2); an; Br),
and 3,1 satisfies the BVP,
2"(t) = G(t,z;80), te€0,1],
2(0) =a, @(1) = h(z(1/2); Ba)-

[0,1] is compact, and the convergence is monotone; it follows that
that convergence of each sequence, {ay} or {8,}, is uniform. It is then
straightforward to see that if z is a limit point of either sequence, then

1
2(t) = a(l — ) + g(z(1/2))t + /O Gt 2) f(s, (s))ds.

50, as in Theorem 3.1, z is a solution of the BVP, (1.3), (1.4). Uniqueness
of z follows by Corollary 3.1.
Here, we shall obtain each of (3.9), (3.10) and (3.11). Since

F(t30403040a50) — f(t7a0)

and
ap(1) < g(ao(1/2)) = h(ao(1/2); oa, Bo),
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ap is trivially a lower solution of the BVP, (3.5), (3.6). As for 3, there
exists ¢g € (ap(1/2), 5o(1/2)) such that
9(60(1/2)) — 1(Bo(1/2); a0, o)
= 9(ﬁo(1/2)) 9(ao(1/2)) = ¢'(6o(1/2))(Bo(1/2) — a0(1/2))
= (¢'(c0) ~ ¢'(Bo(1/2))(Bo(1/2) — @0(1/2)) 2 0

since ¢’ is decreasing. Moreover,

f(t: 50) S f(ta aO) + fm(taﬁO)(ﬁO - 050)

by (3.3). Thus, By is an upper solution of the BVP, (3.5), (3.6). By
Theorem 3.3 there is a solution oy of the BVP, (3.5), (3.6), satisfying
(3.9).
Similarly, B is an upper solution of the BVP, (3.7), (3.8) since
G(t, Bo; Bo) = f(t. B0),  9(Bo(1/2)) = h(Bo(L/2); Bo)-
As for ag, there exists ¢ € (ap(1/2), fo(1/2)) such that

h(e0(1/2); Bo) — g(eo(1/2))
= 9(60(1/2)) — g(an(1/2)) + g'(Bo(1/2)) (0 (1/2) — Fo(1/2))
= (¢'(c1) — ¢'(Bo(1/2))(Bo(1/2) — a0(1/2)) 2 0,
and f(t,ap) > f(t,Bo) + fu(t, Bo)(co — Bo) follows from (3.3). By The-
orem 3.3 there exists a solution 3; of the BVP, (3.7), (3.8), satisfying
(3.10).

To obtain (3.11), apply the mean value theorem appropriately to
obtain ¢1, co satisfying ap < ¢1 < ¢ < [p such that

O/ll(t) - f(tvoél)
= f(t,a0) + fz(t, Bo)(a(t) — ao(t)) — f(t, 1)
= fm(t7cl)(a0 - al) + fw(taﬁﬂ)(al - 010)
= fmm(tacZ)(ﬂO - Cl)(al - CVO)
> 0.
Also, there exists ¢3 € (an(1/2),@1(1/2)) such that
9(1(1/2)) — (1)
= g(e1(1/2)) — g(ao(1/2)) — ¢'(Bo(1/2))(01(1/2) — 0(1/2))
= (4'(¢e3) — ¢’ (Bo(1/2))) (@1 (1/2) — a0(1/2))

>0
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Hence, a; is a lower solution of the BVP, (1.3), (1.4). Similarly, 8 is
an upper solution of the BVP, (1.3), (1.4). Apply Theorem 3.2 and we
have obtained (3.11). O

COROLLARY 3.2. The convergence of each of the sequences, {a, } and
{B,}, is quadratic.

Proof. Set g, = By — 2, pp = & — @y, where z denotes the unique
solution of the BVP, (1.3), (1.4). Set

en = max{[|gnll, [[pnl[}:

where || - || denotes the supremum norm on C[0,1].

We show the quadratic convergence with g,. Details for the quadratic
convergence with p, are similar. Note, ¢, 2 0 follows from the monotone
convergence. Apply the mean value theorem; there exist

r<c <<,
such that
Tns1(t)
= f(taﬂn) + fm(tvﬁn)(/ﬁn-{-l - 571) - f(t,$)
= fo(t,e1)(Bn — @) + fo(t, Bn) (Brr1 — Bn)
= folt,c1)(Bn — ) + fo(t, Bu)((Bag1 — ) + (. — Bn))
= (fr(t: Cl) - fm(tv /Bn))Qn + fm(t7ﬁn)9n+1
fex(t,ca)(c1 = Brn)gn + fu(t, Br)an+1
> — feult, 02)(‘171)2 + fe(t, Bru)qn+1
z - ManHz,

where M is a bound on |f;| for £ € [0,1], z(t) < cp < Bo(t). Refer to
(3.1) to note that G(t,s) < 0 on (0,1) x (0,1). Thus,

Gty 5)an1a(s) € —MG(t, 5)|laall = MIG(2, 5)|l|gn]

for s € [0,1]. Then there exists ¢y such that z(1/2) < ¢y < 8,(1/2) such
that

Qn+1(t) = (B(ﬁn—i—l(l/z); Bn) - g(w(l/.‘Z))t + /0 G(tv 5)Q§:+1 ('9)d5
< [9(6n(1/2)) + 9/ (B2 (1/2))(Bnt1(1/2) — Ba(1/2)) — g((1/2))]t
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1
+M][ga]? /0 G(t, 5)|ds

[(9'(c0) — 9" (Bn(1/2)))gn (1/2) + g'(Bn(1/2))m1 (1/2)]t + M [|gn][*
[9"(e1)(co = Bn(1/2))an(1/2) + 9 (8n(1/2))gn+1 (1/2)]t + Ma||gnl®
¢ (Bn(1/2))llgns |l + (M1 + M3)]|ga]|*

Mlanaa|l + Maflgal%,

where ||g'|| < A < 1, M; provides a bound on Mfol |G(t, s)|ds, Ma

provides a bound on |¢"| on [2(1/2), 8o(1/2)] and M3 = M+ M,. Solve
algebraically for ||gn+1]|? to obtain

IAIA

M

2
=gl 0

||Q17.+1H <

REMARK 3.1. The boundary conditions, (1.2), are a special case of
the boundary conditions, (1.4), with g(z) = z. Since, ¢’ =1 and ¢" = 0,
the BVP, (1.1), (1.2), can be considered a limiting case for the family of
BVPs addressed in Theorem 3.4; we solve algebraically for |(gn41]| in the
proof of Theorem 3.4, and so, the quadratic convergence in Theorem 2.4
is not obtained using the methods of Section 3. Thus, the construction
of the Green’s function in Section 2 is of interest.
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