
KYUNGPOOK Math. J. 56(2016), 419-430

http://dx.doi.org/10.5666/KMJ.2016.56.2.419

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

Positive Solutions for Three-point Boundary Value Problem
of Nonlinear Fractional q-difference Equation

Wengui Yang
Ministry of Public Education, Sanmenxia Polytechnic, Sanmenxia 472000, China
e-mail : yangwg8088@163.com

Abstract. In this paper, we investigate the existence and uniqueness of positive solu-

tions for three-point boundary value problem of nonlinear fractional q-difference equation.

Some existence and uniqueness results are obtained by applying some standard fixed point

theorems. As applications, two examples are presented to illustrate the main results.

1. Introduction

As a matter of fact, fractional differential equations arise in many engineering
and scientific disciplines as the mathematical modeling of systems and processes
in the fields of physics, chemistry, aerodynamics, electrodynamics of a complex
medium, polymer rheology, etc. involves derivatives of fractional order. Fractional
differential equations also serve as an excellent tool for the description of hereditary
properties of various materials and processes. In consequence, fractional differential
equations have been of great interest; for example, see [2, 3, 4, 7, 16] and the
references therein.

The q-difference calculus or quantum calculus is an old subject that was ini-
tially developed by Jackson [13, 14], basic definitions and properties of q-difference
calculus can be found in the book mentioned in [15].

The fractional q-difference calculus had its origin in the works by Al-Salam [6]
and Agarwal [1]. More recently, maybe due to the explosion in research within the
fractional differential calculus setting, new developments in this theory of fractional
q-difference calculus were made, for example, q-analogues of the integral and dif-
ferential fractional operators properties such as the q-Laplace transform, q-Taylor’s
formula, Mittage-Leffler function [5, 17, 18], just to mention some.

Recently, the question of the existence of solutions for fractional q-difference
boundary value problems have aroused considerable attention. There have been
some papers dealing with the existence and multiplicity of solutions or positive
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solutions for boundary value problems involving nonlinear fractional q-difference
equations, such as the Krasnosel’skii fixed-point theorem, the Leggett-Williams
fixed-point theorem, and the Schauder fixed-point theorem, For examples, see [8, 9]
and the references therein.

El-Shahed and Hassan [10] studied the existence of positive solutions of the
following q-difference boundary value problem{

−(D2
qu)(t) = a(t)f(u(t)), 0 ≤ t ≤ 1,

αu(0)− βDqu(0) = 0, γu(1)− δDqu(1) = 0.

Ferreira [11] and [12] considered the existence of positive solutions to nonlinear
q-difference boundary value problems{

−(Dα
q u)(t) = −f(t, u(t)), 0 ≤ t ≤ 1, 1 < α ≤ 2,

u(0) = u(1) = 0,

and {
(Dα

q u)(t) = −f(t, u(t)), 0 ≤ t ≤ 1, 2 < α ≤ 3,
u(0) = (Dqu)(0) = 0, (Dqu)(1) = β ≥ 0,

respectively.
In this paper, we investigate the existence and uniqueness results for the follow-

ing nonlinear fractional q-difference equations with three-point boundary conditions{
(Dα

q u)(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1, 1 < α ≤ 2,

u(0) = 0, u(1) = βu(ξ),
(1.1)

where 0 < βξα−1 < 1, 0 < ξ < 1, Dα
q is the fractional q-derivative of the Riemann-

Liouville type of order α, and f : [0, 1] × [0,∞) → [0,∞) is continuous function.

2. Preliminaries

For the convenience of the reader, we present some necessary definitions and
lemmas of fractional q-calculus theory to facilitate analysis of problem (1.1). These
details can be found in the recent literature; see [15] and references therein.

Let q ∈ (0, 1) and define

[a]q =
qa − 1

q − 1
, a ∈ R.

The q-analogue of the power (a− b)(n) with n ∈ N0 is

(a− b)(0) = 1, (a− b)(n) =

n−1∏
k=0

(a− bqk), n ∈ N, a, b ∈ R.
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More generally, if α ∈ R, then

(a− b)(α) = aα
∞∏
n=0

a− bqn

a− bqα+n
.

Note that, if b = 0 then a(α) = aα. The q-gamma function is defined by

Γq(x) =
(1− q)(x−1)

(1− q)x−1
, x ∈ R \ {0,−1,−2, . . .},

and satisfies Γq(x+ 1) = [x]qΓq(x).
The q-derivative of a function f is here defined by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
, (Dqf)(0) = lim

x→0
(Dqf)(x),

and q-derivatives of higher order by

(D0
qf)(x) = f(x) and (Dn

q f)(x) = Dq(D
n−1
q f)(x), n ∈ N.

The q-integral of a function f defined in the interval [0, b] is given by

(Iqf)(x) =

∫ x

0

f(t)dqt = x(1− q)
∞∑
n=0

f(xqn)qn, x ∈ [0, b].

If a ∈ [0, b] and f is defined in the interval [0, b], its integral from a to b is
defined by ∫ b

a

f(t)dqt =

∫ b

0

f(t)dqt−
∫ a

0

f(t)dqt.

Similarly as done for derivatives, an operator Inq can be defined, namely,

(I0
q f)(x) = f(x) and (Inq f)(x) = Iq(I

n−1
q f)(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf)(x) = f(x),

and if f is continuous at x = 0, then

(IqDqf)(x) = f(x)− f(0).

Basic properties of the two operators can be found in the book [15]. We now
point out three formulas that will be used later (iDq denotes the derivative with
respect to variable i)

[a(t− s)](α) = aα(t− s)(α), tDq(t− s)(α) = [α]q(t− s)(α−1),
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(
xDq

∫ x

0

f(x, t)dqt

)
(x) =

∫ x

0
xDqf(x, t)dqt+ f(qx, x).

Denote that if α > 0 and a ≤ b ≤ t, then (t− a)(α) ≥ (t− b)(α) [11].

Definition 2.1. ([19]) Let α ≥ 0 and f be function defined on [0, 1]. The fractional
q-integral of the Riemann-Liouville type is I0

q f(x) = f(x) and

(Iαq f)(x) =
1

Γq(α)

∫ x

0

(x− qt)(α−1)f(t)dqt, α > 0, x ∈ [0, 1].

Definition 2.2. ([19]) The fractional q-derivative of the Riemann-Liouville type of
order α ≥ 0 is defined by D0

qf(x) = f(x) and

(Dα
q f)(x) = (Dm

q I
m−α
q f)(x), α > 0,

where m is the smallest integer greater than or equal to α.

Lemma 2.1. ([19]) Let α, β ≥ 0 and f be a function defined on [0, 1]. Then the
next formulas hold:

(a) (Iβq I
α
q f)(x) = Iα+β

q f(x),

(b) (Dα
q I

α
q f)(x) = f(x).

Lemma 2.2. ([11]) Let α > 0 and p be a positive integer. Then the following
equality holds:

(Iαq D
p
qf)(x) = (Dp

qI
α
q f)(x)−

p−1∑
k=0

xα−p+k

Γq(α+ k − p+ 1)
(Dk

q f)(0).

Lemma 2.3. Let y ∈ C[0, 1] and 1 < α ≤ 2, the unique solution of

(Dα
q u)(t) + y(t) = 0, 0 ≤ t ≤ 1,

u(0) = 0, u(1) = βu(ξ),
(2.1)

is given by

u(t) =

∫ 1

0

G(t, qs)y(s)dqs,

where

G(t, s) =(2.2) 

tα−1(1−s)(α−1)−βtα−1(ξ−s)(α−1)−(t−s)(α−1)(1−βξα−1)
(1−βξα−1)Γq(α) , 0 ≤ s ≤ t ≤ 1, s ≤ ξ,

tα−1(1−s)(α−1)−(t−s)(α−1)(1−βξα−1)
(1−βξα−1)Γq(α) , 0 < ξ ≤ s ≤ t ≤ 1,

tα−1(1−s)(α−1)−βtα−1(ξ−s)(α−1)

(1−βξα−1)Γq(α) , 0 ≤ t ≤ s ≤ ξ ≤ 1,

tα−1(1−s)(α−1)

(1−βξα−1)Γq(α) , 0 ≤ t ≤ s ≤ 1, ξ ≤ s.
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Proof. At first, by Lemma 2.1 and Lemma 2.2, the equation (2.1) is equivalent to
the integral equation

u(t) = −Iαq y(t) +B1t
α−1 +B2t

α−2, B1, B2 ∈ R,

that is,

u(t) = −
∫ t

0

(t− qs)(α−1)

Γq(α)
y(s)dqs+B1t

α−1 +B2t
α−2.

By the boundary conditions u(0) = 0 and u(1) = βu(η), we have

B1 =

∫ 1

0

(1− qs)(α−1)

(1− βξα−1)Γq(α)
y(s)dqs−

∫ ξ

0

β(ξ − qs)(α−1)

(1− βξα−1)Γq(α)
y(s)dqs, B2 = 0.

Therefore, the solution u(t) of boundary value problem (2.1) satisfies

u(t) =−
∫ t

0

(t− qs)(α−1)

Γq(α)
y(s)dqs+

∫ 1

0

tα−1(1− qs)(α−1)

(1− βξα−1)Γq(α)
y(s)dqs

−
∫ ξ

0

βtα−1(ξ − qs)(α−1)

(1− βξα−1)Γq(α)
y(s)dqs =

∫ 1

0

G(t, qs)y(s)dqs,

where G(t, s) is given by (2.2). The proof is completed.

Lemma 2.4. The function G(t, s) defined by (2.2) satisfies G(t, qs) ≥ 0 for all
0 ≤ s, t ≤ 1.

Proof. We start by defining four functions as follows

g1(t, s) = tα−1(1− s)(α−1) − βtα−1(ξ − s)(α−1) − (t− s)(α−1)(1− βξα−1),

0 ≤ s ≤ t ≤ 1, s ≤ ξ,
g2(t, s) = tα−1(1− s)(α−1) − (t− s)(α−1)(1− βξα−1), 0 < ξ ≤ s ≤ t ≤ 1,

g3(t, s) = tα−1(1− s)(α−1) − βtα−1(ξ − s)(α−1), 0 ≤ t ≤ s ≤ ξ ≤ 1,

g4(t, s) = tα−1(1− s)(α−1), 0 ≤ t ≤ s ≤ 1, ξ ≤ s.

Firstly, we prove g1(t, qs) ≥ 0, 0 ≤ s ≤ t ≤ 1, s ≤ ξ. In view of the fact that if
α > 0 and a ≤ b ≤ t, then (t− a)(α) ≥ (t− b)(α) [11], we get

g1(t, qs) =tα−1(1− qs)(α−1) − βtα−1(ξ − qs)(α−1) − (t− qs)(α−1)(1− βξα−1)

=tα−1

(
(1− qs)(α−1) − β(ξ − qs)(α−1) −

(
1− qs

t

)(α−1)

(1− βξα−1)

)
≥tα−1

(
(1− qs)(α−1) − β(ξ − qs)(α−1) − (1− qs)(α−1)(1− βξα−1)

)
=tα−1

(
βξα−1(1− qs)(α−1) − β(ξ − qs)(α−1)

)
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=tα−1

(
βξα−1(1− qs)(α−1) − βξα−1

(
1− q s

ξ

)(α−1)
)

≥βξα−1tα−1
(

(1− qs)(α−1) − (1− qs)(α−1)
)

= 0.

Therefore, g1(t, qs) ≥ 0, 0 ≤ s ≤ t ≤ 1, s ≤ ξ. Similarly, with 0 < βξα−1 < 1,
0 < 1− βξα−1 < 1, we have

g2(t, qs) =tα−1(1− qs)(α−1) − (t− qs)(α−1)(1− βξα−1)

≥tα−1(1− qs)(α−1) − (t− qs)(α−1)

=tα−1

(
(1− qs)(α−1) −

(
1− qs

t

)(α−1)
)

≥tα−1
(

(1− qs)(α−1) − (1− qs)(α−1)
)

= 0,

g3(t, qs) =tα−1(1− qs)(α−1) − βtα−1(ξ − qs)(α−1)

≥tα−1

(
(1− qs)(α−1) − βξα−1

(
1− q s

ξ

)(α−1)
)

≥tα−1(1− qs)(α−1)(1− βξα−1) ≥ 0.

It is obvious that g4(t, qs) = tα−1(1 − qs)(α−1) ≥ 0, 0 ≤ t ≤ s ≤ 1, ξ ≤ s.
Hence, G(t, qs) ≥ 0 for all 0 ≤ s, t ≤ 1. The proof is completed.

Let C = C([0, 1],R) denote the Banach space of all continuous functions from
[0, 1] → R endowed with the norm defined by ‖u‖ = maxt∈[0,1] |u(t)|. Define the
cone P ⊂ C by

P = {u ∈ C|u(t) ≥ 0, for t ∈ [0, 1]}.

Lemma 2.5. Let T : P→ C be the operator defined by

T u(t) :=

∫ 1

0

G(t, qs)f(s, u(s))dqs = −
∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, u(s))dqs

+

∫ 1

0

tα−1(1− qs)(α−1)

(1− βξα−1)Γq(α)
f(s, u(s))dqs−

∫ ξ

0

βtα−1(ξ − qs)(α−1)

(1− βξα−1)Γq(α)
f(s, u(s))dqs.

Then T : P→ P is completely continuous.

Proof. The operator T : P → P is continuous in view of nonnegativeness and
continuity of G and f . Let Ω ⊂ P be bounded, i.e., there exists a positive constant
M > 0 such that ‖u‖ ≤ M , for all u ∈ Ω. Let K = max0≤t≤1,0≤u≤M |f(t, u)| + 1,
then, for all u ∈ Ω, we have

|T u(t)| =
∣∣∣∣∫ 1

0

G(t, qs)f(s, u(s))dqs

∣∣∣∣ ≤ K ∫ 1

0

max
0≤t≤1

G(t, qs)dqs.
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Hence, T (Ω) is bounded.
On the other hand, given ε > 0, setting

δ = min

{
1,

(
(1− βξα−1)Γq(α+ 1)ε

K(2− βξα−1 + βξα)2α

) 1
α−1

}
,

then, for each u ∈ Ω, t1, t2 ∈ [0, 1], t1 < t2 and t2 − t1 < δ, one has |T u(t2) −
T (t1)| < ε. That is to say, T (Ω) is equicontinuity. In fact,

|T u(t2)−T u(t1)|

=

∣∣∣∣−∫ t2

0

(t2 − qs)(α−1)

Γq(α)
f(s, u(s))dqs+

∫ 1

0

tα−1
2 (1− qs)(α−1)

(1− βξα−1)Γq(α)
f(s, u(s))dqs

−
∫ ξ

0

βtα−1
2 (ξ − qs)(α−1)

(1− βξα−1)Γq(α)
f(s, u(s))dqs+

∫ t1

0

(t1 − qs)(α−1)

Γq(α)
f(s, u(s))dqs

−
∫ 1

0

tα−1
1 (1− qs)(α−1)

(1− βξα−1)Γq(α)
f(s, u(s))dqs+

∫ ξ

0

βtα−1
1 (ξ − qs)(α−1)

(1− βξα−1)Γq(α)
f(s, u(s))dqs

∣∣∣∣∣
≤
∣∣∣∣∫ t2

0

(t2 − qs)(α−1)

Γq(α)
f(s, u(s))dqs−

∫ t1

0

(t1 − qτ)(α−1)

Γq(α)
f(s, u(s))dqs

∣∣∣∣
+

∣∣∣∣∫ 1

0

tα−1
2 (1− qs)(α−1)

(1− βξα−1)Γq(α)
f(s, u(s))dqs−

∫ 1

0

tα−1
1 (1− qs)(α−1)

(1− βξα−1)Γq(α)
f(s, u(s))dqs

∣∣∣∣
+

∣∣∣∣∣
∫ ξ

0

βtα−1
2 (ξ − qs)(α−1)

(1− βξα−1)Γq(α)
f(s, u(s))dqs−

∫ ξ

0

βtα−1
1 (ξ − qs)(α−1)

(1− βξα−1)Γq(α)
f(s, u(s))dqs

∣∣∣∣∣
≤K(tα2 − tα1 )

Γq(α+ 1)
+
K(1 + βξα)(tα−1

2 − tα−1
1 )

(1− βξα−1)Γq(α+ 1)
.

In the following, we divide the proof into two cases.
Case 1. δ ≤ t1 < t2 < 1, with the use of mean value theorem,

tα−1
2 − tα−1

1 ≤ δα−2(α− 1)(t2 − t1) ≤ (α− 1)δα−1.

Case 2. 0 ≤ t1 < δ, t2 < 2δ. Then we have

tα−1
2 − tα−1

1 ≤ tα−1
2 < (2δ)α−1.

Consequently, we have

max{tα−1
2 − tα−1

1 , tα2 − tα1 } ≤ 2αδα−1

and

|T u(t2)−T u(t1)| ≤ K(2− βξα + βξα)2α

(1− βξα−1)Γq(α+ 1)
δα−1 ≤ ε.

By means of the Arzela-Ascoli theorem, we have that T : P→ P is completely
continuous. The proof is complete.
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3. Main Results

In this section, our objective is to give and prove our main results.

Theorem 3.1. Suppose f(t, u) satisfies

0 ≤ lim sup
u→+∞

max
t∈[0,1]

f(t, u)

u
< (1− βξα−1)Γq(α+ 1).(3.1)

Then the problem (1.1) has at least one positive solution.

Proof. By (3.1), taking into account the nonnegativity and continuity of f , there
exist C > 0, 0 < M < (1− βξα−1)Γq(α+ 1) such that

0 ≤ f(t, u) < Mu+ C, for t ∈ [0, 1], u ∈ [0,+∞).

Let

BR =

{
u ∈ P

∥∥∥∥u− C ∫ 1

0

G(t, qs)dqs

∥∥∥∥ ≤ R}
be a convex, bounded, and closed subset of the Banach space E. For u ∈ BR, we
have

‖u‖ ≤ C
∥∥∥∥∫ 1

0

G(t, qs)dqs

∥∥∥∥+R ≤ R+
C

(1− βξα−1)Γq(α+ 1)

and ∣∣∣∣T u(t)− C
∫ 1

0

G(t, qs)dqs

∣∣∣∣ ≤ ∫ 1

0

G(t, qs)|f(t, u(s))− C|dqs

≤max

{
M‖u‖

1− βξα−1)Γq(α+ 1)
,

C

1− βξα−1)Γq(α+ 1)

}
≤max

{
M

1− βξα−1)Γq(α+ 1)

(
R+

C

(1− βξα−1)Γq(α+ 1)

)
,

C

(1− βξα−1)Γq(α+ 1)

}
≤ R

as long as

R ≥ C

(1− βξα−1)Γq(α+ 1)−M
.

So, we have T (BR) ⊂ BR. Then, combining with Lemma 2.5, the Schauder
fixed point theorem assures that operator T has at least one fixed point in BR and
then the problem (1.1) has at least one positive solution. The proof is complete.
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Theorem 3.2. Suppose that f : [0, 1]×R→ [0,+∞) is a jointly continuous function
satisfying the condition

|f(t, u)− f(t, v)| ≤ L|u− v|, for t ∈ [0, 1], u, v ∈ [0,+∞).

Then the problem (1.1) has a unique positive solution if

L ≤ (1− βξα−1)Γq(α+ 1)

2(2− βξα−1 + βξα)
.

Proof. Defining supt∈[0,1] |f(t, 0)| = K <∞ and selecting

r ≥ 2K(2− βξα−1 + βξα)

(1− βξα−1)Γq(α+ 1)
,

we show that TBr ⊂ Br, where Br = {u ∈ C : ‖u‖ ≤ r}. For u ∈ Br, we have

|T u(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, u(s))|dqs+

∫ 1

0

tα−1(1− qs)(α−1)

(1− βξα−1)Γq(α)
|f(s, u(s))|dqs

+

∫ ξ

0

βtα−1(ξ − qs)(α−1)

(1− βξα−1)Γq(α)
|f(s, u(s))|dqs

≤
∫ t

0

(t− qs)(α−1)

Γq(α)
(|f(s, u(s))− f(s, 0)|+ |f(s, 0)|)dqs

+

∫ 1

0

tα−1(1− qs)(α−1)

(1− βξα−1)Γq(α)
(|f(s, u(s))− f(s, 0)|+ |f(s, 0)|)dqs

+

∫ ξ

0

βtα−1(ξ − qs)(α−1)

(1− βξα−1)Γq(α)
(|f(s, u(s))− f(s, 0)|+ |f(s, 0)|)dqs

≤(Lr +K)

(∫ t

0

(t− qs)(α−1)

Γq(α)
dqs+

∫ 1

0

tα−1(1− qs)(α−1)

(1− βξα−1)Γq(α)
dqs

+

∫ ξ

0

βtα−1(ξ − qs)(α−1)

(1− βξα−1)Γq(α)
dqs

)
≤ (Lr +K)

2− βξα−1 + βξα

(1− βξα−1)Γq(α+ 1)
≤ r.

Taking the maximum over the interval [0, 1], we get ‖T u(t)‖ ≤ r. Now, for
u, v ∈ C and for each t ∈ [0, 1], we obtain

‖T u(t)−T v(t)‖ ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, u(s))− f(s, v(s))|dqs

+

∫ 1

0

tα−1(1− qs)(α−1)

(1− βξα−1)Γq(α)
|f(s, u(s))− f(s, v(s))|dqs

+

∫ ξ

0

βtα−1(ξ − qs)(α−1)

(1− βξα−1)Γq(α)
|f(s, u(s))− f(s, v(s))|dqs
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≤L‖u− v‖
(∫ t

0

(t− qs)(α−1)

Γq(α)
dqs

+

∫ 1

0

tα−1(1− qs)(α−1)

(1− βξα−1)Γq(α)
dqs+

∫ ξ

0

βtα−1(ξ − qs)(α−1)

(1− βξα−1)Γq(α)
dqs

)

≤ L(2− βξα−1 + βξα)

(1− βξα−1)Γq(α+ 1)
‖u− v‖ = ΛL,α,β,ξ‖u− v‖,

where

ΛL,α,β,ξ =
L(2− βξα−1 + βξα)

(1− βξα−1)Γq(α+ 1)
,

which depends only on the parameters involved in the problem. As ΛL,α,β,ξ < 1,
Then, combining with Lemma 2.5, the Banach fixed point theorem assures that
operator T has a unique fixed point in C and then the problem (1.1) has a unique
positive solution. The proof is complete.

4. Two Examples

In this section, we will present some examples to illustrate the main results.

Example 4.1. Consider the following q-fractional three-point boundary value prob-
lem  (Dα

q u)(t) =
(2u2 + u)(2 + sinu)

9u+ 1
, t ∈ [0, 1],

u(0) = 0, u(1) = βu(ξ).
(4.1)

where α = 1.5 and β = ξ = q = 0.5. By simple computation, we can easily have

0 ≤ lim sup
u→+∞

max
t∈[0,1]

f(t, u)

u
≈ 0.666667 < (1− βξα−1)Γq(α+ 1) ≈ 0.769655.

Thus, all the assumptions of Theorem 3.1 holds. Consequently, the conclusion
of Theorem 3.1 implies that the problem (4.1) has at least one positive solution.

Example 4.2. Consider the following q-fractional three-point boundary value prob-
lem  (Dα

q u)(t) =
e−πt|u(t)|

(6 + e−πt)(1 + |u(t)|)
, t ∈ [0, 1],

u(0) = 0, u(1) = βu(ξ),
(4.2)

where α = 1.5 and β = ξ = q = 0.5. Let

f(t, u) =
e−πt|u|

(6 + e−πt)(1 + |u|)
.
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Clearly, L = 1/6 as |f(t, u)− f(t, v)| ≤ 1/6|u− v|. Further,

2L(2− βξα−1 + βξα)

(1− βξα−1)Γq(α+ 1)
=

2(2− 0.5 ∗ 0.50.5 + 0.5 ∗ 0.51.5)

6(1− 0.5 ∗ 0.50.5)Γ0.5(2.5)
≈ 0.789628 < 1.

Thus, all the assumptions of Theorem 3.2 are satisfied. Therefore, the conclusion
of Theorem 3.2 implies that the problem (4.2) has a unique positive solution.
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