• 제목/요약/키워드: the bounded stability

검색결과 259건 처리시간 0.025초

시간지연을 갖는 불확정성 선형 시스템의 강인 안정성에 관한 연구 (A Study on Robust Stability of Uncertain Linear Systems with Time-delay)

  • 이희송;마삼선;유정웅;김진훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.615-621
    • /
    • 1999
  • In this paper, we consider the robust stability of uncertain linear systems with time-delay in the time domain. The considered uncertainties are both the unstructured uncertainty which is only Known its norm bound and the structured uncertainty which is known its structured. Based on Lyapunov stability theorem and{{{{ { H}_{$\infty$ } }}}} theory known as Strictly Bounded Real Lemma (SBRL), we present new conditions that guarantee the robust stability of system. Also, we extend this to multiple time-varying delays systems and large-scale systems, respectively. Finally, we show the usefulness of our results by numerical examples.

  • PDF

Bounded real 전달함수의 이산모델 차수줄임 (Discrete model reduction of bounded real transfer functions)

  • 오도창;정은태;박홍배
    • 전자공학회논문지B
    • /
    • 제33B권5호
    • /
    • pp.33-40
    • /
    • 1996
  • In this paper, we propose the discrete model reduction method of bounded real transfer functions. From the discrete bounded real lemma, we obtain the two riccati equations and define the disrete bounded real balancing using solutions of these two riccati equations. And we get the reduced order discrete model from the GSPA of full order model. Especially, when free parameter of GSPA is .+-.1, we show that the reduced order discrete model retains minimality, stability, and bounded real and BR-balancing properties. And we derive the .inf.-norm error bound between full order model and reduced order model. Finally to illustrate the validity of proposed method, we give an example.

  • PDF

BOUNDEDNESS IN FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Goo, Yoon Hoe
    • 충청수학회지
    • /
    • 제29권2호
    • /
    • pp.347-359
    • /
    • 2016
  • In this paper, we show that the solutions to perturbed functional differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$$, have a bounded properties. To show the bounded properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$ and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of $t_{\infty}$-similarity.

Onset of Buoyancy-Driven Convection in a Fluid-Saturated Porous Layer Bounded by Semi-infinite Coaxial Cylinders

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • 제57권5호
    • /
    • pp.723-729
    • /
    • 2019
  • A theoretical analysis was conducted of convective instability driven by buoyancy forces under transient temperature fields in an annular porous medium bounded by coaxial vertical cylinders. Darcy's law and Boussinesq approximation are used to explain the characteristics of fluid motion and linear stability theory is employed to predict the onset of buoyancy-driven motion. The linear stability equations are derived in a global domain, and then cast into in a self-similar domain. Using a spectral expansion method, the stability equations are reformed as a system of ordinary differential equations and solved analytically and numerically. The critical Darcy-Rayleigh number is founded as a function of the radius ratio. Also, the onset time and corresponding wavelength are obtained for the various cases. The critical time becomes smaller with increasing the Darcy-Rayleigh number and follows the asymptotic relation derived in the infinite horizontal porous layer.

STABILITY OF ISOMETRIES ON RESTRICTED DOMAINS

  • Jung, Soon-Mo;Kim, Byung-Bae
    • 대한수학회지
    • /
    • 제37권1호
    • /
    • pp.125-137
    • /
    • 2000
  • In the present paper, the classical results of the stability of isometries obtained by some authors will be generalized; More precisely, the stability of isometries on restricted (unbounded or bounded) domains will be investigated.

  • PDF

크기가 제한된 제어기를 갖는 비정합 불확실성의 가변구조 시스템을 위한 점근 안정 영역 추정 (Estimation of the Asymptotic Stability Region for a Mismatched Uncertain Variable Structure System with a Bounded Controller)

  • 최한호
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.600-603
    • /
    • 2007
  • We propose a method to estimate the asymptotic stability region(ASR) of a mismatched uncertain variable structure system with a bounded controller. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the quadratic stability of the closed-loop control system in the estimated ASR. We also give a simple LMI-based algorithm for estimating the ASR. Finally, we give a numerical example in order to show the effectiveness of our method.

매개변수의 불확실성에 대한 이산시간 가변구조 제어기법의 견실성 (Robustness of discrete-time variable structure control to parametric uncertainties)

  • 은용순;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.293-296
    • /
    • 1997
  • Robust stability conditions for discrete-time variable structure control is proposed. Conventionally the discrete-time variable structure control method with a variable structure uncertainty compensator approach requires a bounded changing rate of the uncertainties to ensure robust stability. However, when uncertainties vary as a function of state variables, which occur with parametric uncertainties, it is not reasonable to assume a bounded variation on the uncertainties. In this paper, uncertainties are assumed to consist of exogenous disturbances and parametric uncertainties. An uncertainty compensator is used to deal with the former, and a robust stability condition is derived using Small Gain Theorem for the latter.

  • PDF

NONLINEAR CONTROL FOR CORE POWER OF PRESSURIZED WATER NUCLEAR REACTORS USING CONSTANT AXIAL OFFSET STRATEGY

  • ANSARIFAR, GHOLAM REZA;SAADATZI, SAEED
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.838-848
    • /
    • 2015
  • One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC), which is a robust nonlinear controller, is presented.SMCis ameansto control pressurized water nuclear reactor (PWR) power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

Absolute Stability of the Simple Fuzzy Logic Controller

  • Park, Byung-jae
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.574-578
    • /
    • 2001
  • The stability analysis for the fuzzy logic controller (FLC) has widely been reported. Furthermore many research in the FLC has been introduced to decrease the number of parameters representing the antecedent part of the fuzzy control rule. In this paper we briefly explain a single-input fuzzy logic controller (SFLC) or simple-structured FLC which uses only a single input variable. And then we analyze that it is absolutely stale based on the sector bounded condition. We also show the feasibility of the proposed stability analysis through a numerical example of a mass-damper-spring system.

  • PDF

Study of the Robustness Bounds with Lyapunoved-Based Stability Concept

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.700-705
    • /
    • 2005
  • The purpose of this project is the derivation and development of techniques for the new estimation of robustness for the systems having uncertainties. The basic ideas to analyze the system which is the originally nonlinear is Lyapunov direct theorems. The nonlinear systems have various forms of terms inside the system equations and this investigation is confined in the form of bounded uncertainties. Bounded means the uncertainties are with same positive/negative range. The number of uncertainties will be the degree of freedoms in the calculation of the stability region. This is so called the robustness bounds. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. Using this relaxing stability conditions, the selection of Lyapunov candidate function is of various forms. In this paper, the quadratic form is selected. this generated techniques has been demonstrated by recent research interest in the area of robust control design and confirms that estimation of robustness bounds will be improved upon those obtained by results of the original Lyapunov method. In this paper, the symbolic algebraic procedures are utilized and the calculating errors are reduced in the numerical procedures. The application of numerical procedures can prove the improvements in estimations of robustness for one-and more structured perturbations. The applicable systems is assumed to be linear with time-varying with nonlinear bounded perturbations. This new techniques will be extended to other nonlinear systems with various forms of uncertainties, especially in the nonlinear case of the unstructured perturbations and also with various control method.

  • PDF