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STABILITY OF ISOMETRIES
ON RESTRICTED DOMAINS

SooN-Mo JUNG AND BYUNGBAE KIM

ABSTRACT. In the present paper, the classical results of the sta-
bility of isometries obtained by some authors will be generalized;
More precisely, the stability of isometries on restricted (unbounded
or bounded) domains will be investigated.

0. Introduction

Let E and F be real Banach spaces. A function I : E — F is called
an isometry if I satisfies the equality

1(z) = I(y)]| = ll= - yll

for all z,y € E.
Following D. H. Hyers and S. M. Ulam [8], a function f : E — F'is
called a é-isometry if f satisfies the inequality

(*) f(2) = FWll - lle—wll| <6

for all z,y € E. If in this case there exist an isometry I : £ — F and
a constant k > 0 such that || f(z) — I(z)|| < k6 for all z in E, then we
say that the isometry from E into F is stable (in the sense of Hyers and
Ulam).

Hyers and Ulam proved in the same paper the stability of isome-
tries between real Hilbert spaces. More precisely, they proved that if a
surjective function f : £ — FE, where F is a real Hilbert space, satis-
fies f(0) = 0 as well as the inequality (x) for some § > 0 and for all
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z,y € E, then there exists a surjective isometry I : E — E such that
(If(z) — I(z)|| <100 for any z in E.

This result of Hyers and Ulam was the first one concerning the sta-
bility of isometries and was further generalized by D. G. Bourgin [1].
Indeed, Bourgin proved the following: Assume that E is a Banach space
and that F belongs to a class of uniformly convex spaces which includes
the spaces L,(0,1) for 1 < p < oco. If a function f : E — F satis-
fies f(0) = 0 as well as the inequality (%) for some § > 0 and for all
z,y in E, then there exists a linear isometry I : E — F such that
I f(z) — I(z)| <124 for each z in E.

Subsequently, D. H. Hyers and S. M. Ulam (9] studied the stability
problem for spaces of continuous functions: Let S; and Sy be compact
metric spaces and C(S;) denote the space of real-valued continuous func-
tions on S; equipped with the metric topology with || - [|. If @ homeo-
morphism T : C(S1) — C(S,) satisfies the inequality

(++) HT() = Tl = 1f — glloo | <6

for some § > 0 and for all f,g € C(S), then there exists an isometry U :
C(S81) — C(Ss) such that ||T(f) — U(f)|le < 216 for every f € C(S,).

This result of Hyers and Ulam was significantly generalized by D. G.
Bourgin again (see [2]): Let S; and S; be completely regular Hausdorff
spaces and let 7" : C(S;) — C(S2) be a surjective function satisfying the
inequality (%) for some § > 0 and for all f, g € C(S;). Then there exists
a linear isometry U : C(S1) — C(S3) such that ||T(f) — U(f)|le < 108
for any f € C(S).

The study of stability problems for isometries on finite dimensional
Banach spaces was continued by R. D. Bourgin [3].

In 1978, P. M. Gruber [6] obtained an elegant result as follows: Let
FE and F be real normed spaces. Suppose that f : E — F is a surjective
function and it satisfies the inequality (*) for some § > 0 and for all
z,y € E. Furthermore, assume that [ : £ — F' is an isometry with
f(p) = I(p) for some p € E. 1f || f(z) — I(z)|| = o(l|z]) as ||z} — oo
uniformly, then I is a surjective linear isometry and || f(z) — I(z)|| < 56
for all z € E. If in addition f is continuous, then [|f(z) — I(z)|| < 36
forallz € E.

J. Gevirtz [5] established the stability of isometries between arbitrary
Banach spaces: Given real Banach spaces F and F,let f: E — F be a
surjective function satisfying the inequality (*) for some § > 0 and for
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all z,y € E. Then there exists a surjective isometry I : £ — F such
that || f(z) — I(z)|| < 56 for each z in E.

On the other hand, R. L. Swain [14] considered the stability of isome-
tries on bounded metric spaces and proved the following result: Let M
be a subset of a compact metric space (F,d) and let ¢ > 0 be given.
Then there exists a § > 0 such that if f : M — FE satisfies the inequality
(%) for all z,y € M, then there exists an isometry I : M — E with
d(f(z), I(z)) <€ for any z € M.

The stability problem of isometries on bounded subsets of R" was
studied by J. W. Fickett [4]: For ¢ > 0, let us define Ky(t) = Ki(t) = ¢,
Ky(t) = 3v3t, Ki(t) = 27t™9, where m(i) = 2% for i > 3. Let
S be a bounded subset of R* with diameter d(S), and suppose that
3K,(6/d(S)) <1 for some § > 0. If a function f: S — R™ satisfies the
inequality () for all z,y € S, then there exists an isometry I : S — R"
such that |f(z) — I(z)| < d(S)Kn+1(6/d(S)) for each z € S.

For more detailed information on the stability of isometries and re-
lated topics, one can refer to [11] and [12] (see also [10] and [13]).

In this paper, the results mentioned above will be generalized by
studying the stability problems of isometries on restricted (bounded or
unbounded) domains.

1. Stability on Unbounded Domains

In the following theorem, we will prove the stability of isometries
(in the sense of Hyers, Ulam and Rassias) on restricted (unbounded)
domains by applying the direct method. The direct method was first
devised by D. H. Hyers to construct a true additive function from an
approximate additive function (see [7]).

THEOREM 1. Let E be a real Hilbert space with the associated inner
product {-,-). Letd > 1,8 >0,0<6 <16 and 0 < p < 1 be constants
with 2d — 20dP — § > 0. Denote by B the punctured sphere defined by
B={ze€ E:0<|z|| £d}. Ifa function f : E — E satisfies the
functional inequality

Hf (@) = fll = llz =yl [ <6+ 0z -yl
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for all z,y € E\B, then there exists a unique linear isometry I : E — E

such that
o) — I(z) — V66480 ey
(1) f(z) = I(z) — fO)Il <25 + ﬁ_\/—ﬁllxll

for all z € E\B.

Proof. If we define a function g : E — E by g(z) = f(z) — f(0), then
we have

() Hlg(z) — gl = lle—yll 1 <6+ 0z —y|”
for any z,y € E\B.

Let z € E\(BU {0}) be given. Putting y = 0 and y = 2z separately
in (2), we get
@) Hg@)l = llzll| < 6+ 6]zl

llg(z) — gz)|| ~llzll] < &+&1=|P.

Furthermore, replacing = and y by 2z and 0 in (2), respectively, yields
@) [ lg(22)1 — 2lell | < 6 +26 P

We will now prove that there is a constant C' > 0 such that
(5) lg(z) = (1/2)g(22)]| < & + C ||=||*+P)/2.
It follows from (3) that
(6) lg@@)II* < (=] + 6 ||IP + 6)*
and

lo(e) = 92D = NI+ l9(29)|* - 2((z), 9(20))

© (el + 8 1P + 6.

The inequalities (6), (7) and (4), together with the assumption for d, §,
f and p, yield

2|lg(z) — (1/2)9(22)|?
=2lg(@)|I* + (1/2)llg(22)II* - 2 {g(2), 9(22))
=llg@)I” + lg(@)II* + llg(22)||* - 2 {g(2), 9(22)) — (1/2) llg(22)||?
< (llzll + 6|zl +6)* + (ll| + 6 [l2]]” + 6)°
— (1/2) 2|zl - 26 |=| ~ 8)*

IA
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< (3/2)6° + 86 ||z||**? + 266 ||z||P + 66 ||z
2
<2 (5 + /40 + 38 ||xH(1+p)/2> .

Hence, if we put C := /40 + 30 in the last inequality, we get the in-
equality (5).
Next, we use induction to prove

n—1 n—1
®)  llg(z) —27"g(2z)| <627+ C ||| P2 " 2wz
=0 =0

for all z € E\(BU {0}) and n € N. The inequality (5) implies the
validity of (8) for n = 1. Assume that the inequality (8) holds for some
n > 2. If we replace z by 2z in (8) and then divide by 2 the resulting
inequality, we can conclude by considering (5) that (8) holds for n + 1,
which completes the proof of (8).

If we substitute 2™z and n—m (n > m) for z and n in (8), respectively,
and then divide the resulting inequality by 2™, we get

n—1 n—1
[2mg(2me) — 272" ) S 8 ) 27+ C o] (402 Y oo,
i=m i=m

which implies that the sequence {27"¢g(2"z)} is a Cauchy sequence for
each £ € E\ B. Since F is assumed to be complete, we can define a
function / : E — E by

(9) I(z) == 27"® lim 27"g(2"")z),
where n(z) = min{n € Ny : 2"z ¢ B}. Because of the fact that n(z) = 0
for z € E\ B, the definition (9) reduces to
(10) I(z) = lim 27"g(2"x)

n—oc
for each £ € E\B. Since if z € B then 2"®z ¢ E\ B, the function
I: E — E is well defined.

Let z,y € E\B be given. Then 2"z, 2"y also belong to E\ B for all
n € N. Hence, by (2) we obtain

[127"g(2"x) — 27"g(2"y)|| — ]z — yl| | < 276 + 2P ||z — y|P

for every n € N. Taking the limit as n — oo in the last inequality and
considering (10), we see that I|pg is an isometry.
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Assume that z € B and y € E\B. Since 2"®)z and 2"®)y belong to
E\ B, it follows from (9) and (10) that

2"@|1(2) - I(y)| = |1(2"Pz) — 1(2"@y)|| = 2%z — .

Assume that both z and y belong to B. By (9) and (10) again, we
have

PEOTI|(@) - 1) = [IEW) — 1@y
2 | — .

Altogether, we conclude that I : E — FE is an isometry.

We will now prove the uniqueness of I. According to Lemma 6.2 in
[12], every inner product preserving function between Hilbert spaces is
linear. We can easily see that the isometry I is inner product preserving
because of. the fact J(0) = 0. Therefore, I is a linear isometry. Assume
that there is another linear isometry I* : E — E satisfying the inequality
(1) for all z in E\ B instead of I. Since I and I* are linear, we obtain

| I(z) = I"(z)l| = 27" 1(2"z) — I"(2"z)||
< 2—("-2)5+21—(1—p)n/27___% ]| +)2

— 0 as n— o

for every z in F.
Inequality (8), together with (10), yields the validity of the inequality
(D). O

In the case when 6 = 0 in the inequality given in Theorem 1, we will
improve the modulus in the inequality (1) by using the method presented
in the paper (8] of Hyers and Ulam.

First, we will prove in the following lemma that if z and u are orthog-
onal, then the inner product of f(z) and I(u) is not so large.

LEMMA 2. Let E, B, d and 8 be those stated in Theorem 1, let a
function f : E — F satisfy the inequality

(11) HIf (@) = f@ll —llz—yll{ <6

for allz,y € E\B, and let I be the isometry given in Theorem 1. Assume
that ¢ € E\(B U {0}) and that u € E satisfies ||u|| = 1. It then holds

(12) [(f(z) = £(0),I(u)) | <30
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whenever (z,u) = 0.

Proof. As was in the proof of Theorem 1, if we define a function
g: E — E by g(z) = f(z) — f(0), then g itself satisfies the inequality
(11) instead of f.

Assume that z and u are orthogonal. We can choose an integer n >
n(u) such that

(13) y=z+rug BU{0},
where r = 2" — /22" — ||z||? . Put 2 = 2"u. Then
(14) ly =217 = (v, 9) — 2y, 2) + (2, 2) = |12]|*.

Since g satisfies the inequality (11) for all z,y € E\B, it follows from
(11) and (14) that

(15)
lo(y) — g(2)|l = ¢(y, 2) + lly — 2]l = {(y, 2) + ||2]| = n(y, 2) + [lg(2)I,

where ( and 7 are appropriate correction factors with |((y, z)| < § and

In(y, 2)} < 26.
Squaring both sides of (15), we get

2(9(), 9(2)) = (9(¥), 9(¥)) — 20y, 2)9(2)|l — n(y, 2)*¢

and dividing by 2"*! both sides of the last equality allows us to obtain

(16)
(9(y),27"g(2"u)) = 27D ((g(y), 9(»)) — n(y, 2)®) — n(y, 2)||2"g(2"u)|!.

The relation (13) yields
(17) ly—z||=r—>0 as n— oo.
Furthermore, we see by (9) that

(18)  lim 27"g(2"u) = 27" lim 2~ (=) g(on=nWon(ly) = [(v).

n—00 n—o0

Since I is an isometry with J(0) = 0, |lu|| = 1 implies ||I(u)|| = 1.
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In view of (16), (17) and (18), we can choose a sufficiently large integer
n such that the following inequalities hold for an arbitrary 8 > 0:

[{g(z), I(w)) | < [{g(x), I(u) —27"g(2"u)) | + | (9(y), 27"g(2"w)) |
+ [ {g(z) — 9(y),27"g(2"u)) |
< lg@)| lI(w) —27g(2"w)|| + B + 26|27 g(2 u) ||
+ llg(z) — gl 127" g(2"u) ||
< B+B+2(0+8+0+6)1+0).

Hence, taking the limit as § — 0, we see that the inequality (12)
follows. (W

In the following theorem, we will improve the result of Theorem 1 in
the case when 6 = 0 in the relevant inequality.

THEOREM 3. Let E be a real Hilbert space with the associated inner
product (-,-). Letd > 1 and 0 < § < (1/20)d be fixed, and by B denote
the punctured sphere defined in Theorem 1. If a function f : E — E
satisfies the inequality (11) for all z,y € E\B, then there exists a unique
linear isometry I : E — E such that

(19) If(2) — I(z) - f(O)]| <56
for all x € E\B.

Proof. Let us define a function g : E — E by g(z) = f(z) — f(0).
Then, g satisfies the inequality (11) for all z,y € E\ B. Furthermore,
define the isometry I : £ — E by (9). By Lemma 6.2 in [12], [ is a
linear isometry.

Assume that z € E\ (B U {0}) is given and that M is the (linear)
subspace orthogonal to . Then, I(M) is the subspace orthogonal to
I(z). Let w be the projection of g(z) on I(M). Define

‘ 0 for w =0,
| w/ljw]| for w # 0.

From Lemma 2 it follows that
(20) | {g(z), ) | < 34,

since we can choose a u € M such that (z,u) =0, ||u|| =1 and I(u) =t
(for ¢ # 0). Put v = I(z)/||z||. Then, v is a unit vector orthogonal to ¢
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and is coplanar with g(z) and ¢. By the Pythagorean theorem, we have

(21) llg(z) = @) = (g(=),8)* + (lll| - (g(z), v))"

Let 2z, = 2"z for a non-negative integer n. By w, denote the projec-
tion of g(z,) on I(M) and define

. 0 for w, =0,
P wa/llwa|  for w, #0.
We then obtain (¢,,v) = 0 and by Lemma 2 we have

since there is a u, € M such that (z,,u,) =0, |ju,|| =1 and I(u,) = ¢,
(for t, # 0). By (22), we can obtain

0 < lglen)ll = [0} | = gzl = (lg(zl? = {(zn), t)7)""
z 2
< lg(zl (1—(1—%,‘;&);)—7]2)) < (126,

since ||g(2,)]| 2 f|zall =6 > d — § > 198. The fact ||z.|| < |lg(za)|| + 6,
together with the last inequality, implies that

(23) [ 1zall = [{g(zn), v)] | < (3/2)0.
In the case of (g(z),v) > 0, we put n = 0 in (23) and use (21) and
(20) to obtain
lg(z) — I()|| < (3/2)V/54.

In the case of (g(z),v) < 0, there exists an integer m > 0 such that
(9(2m),v) < 0 and (g(2m+1),v) > 0 because (I(z),v) is positive and
I(z) = lim, o 27"g(2,). Hence, (23) yields

[9(zm+1) = 9(zm)ll Z (9(2mi1),v) — (g(2m), v) = 3 ||2m|| — 36.

Since ||g(zm+1) — 9(zm)|| < ||zml| + 3, we get from the last inequality that
lz|| < llzm|| < 26, and hence

lg(=) = I(@)|| < llg(=)| + H ()| < llzll + 6 + [|=l| < 56.

The uniqueness of the linear isometry I can be easily proved in the
same way as in the proof of Theorem 1. O

By a slight modification of the proof of Theorem 3 we may easily
prove the following corollary. Hence, we omit the proof.
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COROLLARY 4. Let F, B, d and f be those defined in Theorem 3.
For each ¢ > 0 there exists a sufficiently small § > 0 such that if a
function f : E — E satisfies the inequality (11) for all z,y € F\B, then
there exists a unique linear isometry I : E — E with

If(z) —I(z) - F(O)| <46 +e
for any z € E\B.

2. Stability on Bounded Domains

In the previous section, we have investigated the stability problems
in connection with the unbounded domains. We will now prove the
stability of isometries (in the sense of Hyers, Ulam and Rassias) on
bounded domains by using the direct method.

THEOREM 5. Let E be a real Hilbert space with the associated inner
product {-,-). Given 0 < d < 1, denote by D the sphere of radius d and
center at 0, i.e, D = {z € E : ||z| < d}. If a function f : E — E
satisfies the inequality

(@) = 7)) = lle -yl < Ollz —yl?

for some 0 < 6 <1, some p > 1 and for all z,y € D, then there exists a
unique linear isometry I : £ — E such that
2(1+p)/2

@) If@) - 1@) = FO) < 5oy VO 22

for every x € D.

Proof. If we define a function g : E — E by g(z) = f(z) — f(0), then
g satisfies
(25) Hig(z) =gl — llz —yll | < Ollz —y|I”
for all z,y € D.

Let € D be given. Putting y = 0 in (25) we get

(26) Hlg@@)l = lizll | < éljz|lP.
Replacing y by (1/2)z in (25) again yields

lg(z) — g((1/2)2)? lg(@)I* + llg((1/2)2)II* — 2(g(z), 9((1/2)=))
(27) ((1/2)llz] + 2776 2|P)".

IA
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Using (26) and (27) we obtain
(1/2)llg9(z) - 29((1/2)2)|®
= (1/2)llg(@)|* + 2[1g((1/2)2)|? - 2(g(x), 9((1/2)x))
< — (1/2) (Il — 0 ll=]I?)* + ((1/2)l|z]| + 2776 ||z[|”)?
+ ((1/2)2]] + 2770 |2||P)”
< 26 |||+

Hence, we have

(28) lg(2) — 2¢((1/2)2)|| < 2vE ||| T+)/2,
We will now use induction on n to prove
n—1
(29) lg(z) —2°g(27"z)|| < 20 ||| 192 " o - Vi
i=0

for all z € D and for every n € N. The inequality (28) implies the
validity of (29) for n = 1. Assume that the inequality (29) holds for
some n > 2. If we replace z by (1/2)z in (29) and then multiply by 2
the resulting inequality, we may conclude by considering (28) that (29)
holds for n + 1.

If we substitute 27™z and n —m (n > m) for z and n in (29), respec-
tively, and then multiply the resulting inequality by 2™, we obtain

n—1
127g(27"z) — 2°g(27") || < 2V ||| P2y [ 2mE0,

which implies that the sequence {2"¢(27"z)} is a Cauchy sequence.
Hence, we can define a function I : £ — FE by

I(I) — T}l_%lo 2n+m(z)g(2——n—-m(w)x)

for each = € E, where we set

m(z) = min{n € Ny : 27"z € D}.
It is not difficult to prove that I is an isometry (cf. proof of Theorem
1)

The inequality (24) immediately follows from the inequality (29) be-
cause m(z) = 0 holds for each z in D.
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Due to Lemma 6.2 in [12], the isometry I is linear (cf. the proof of
Theorem 1 or 3). If I* : E — E is another linear isometry satisfying the
inequality (24), then

[(z) - I'(z)l| = 2*|I(27"z) - I"(27"2)||
2(3+p)/2 ~(1+p)n/2 14+p)/2
< m\/g_g (p)n/2 || || (14
— 0 as n—o00
for every x in E. g
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