• 제목/요약/키워드: the Stability of Boundary

검색결과 828건 처리시간 0.028초

ASYMPTOTICAL BEHAVIORS OF A DIFFUSIVE PREDATOR-PREY SYSTEM WITH RATIO-DEPENDENT FUNCTIONAL RESPONSE AND MATURATION DELAY

  • Wonlyul Ko
    • 충청수학회지
    • /
    • 제36권1호
    • /
    • pp.39-53
    • /
    • 2023
  • In this paper, we consider a delayed ratio-dependent predator-prey reaction-diffusion system with homogenous Neumann boundary conditions. We study the existence of nonnegative solutions and the stability of the nonnegative equilibria to the system. In particular, we provide a sufficient condition for the positive equilibrium to be globally asymptotically stable.

ASYMPTOTIC STABILIZATION FOR A DISPERSIVE-DISSIPATIVE EQUATION WITH TIME-DEPENDENT DAMPING TERMS

  • Yi, Su-Cheol
    • 충청수학회지
    • /
    • 제33권4호
    • /
    • pp.445-468
    • /
    • 2020
  • A long-time behavior of global solutions for a dispersive-dissipative equation with time-dependent damping terms is investigated under null Dirichlet boundary condition. By virtue of an appropriate new Lyapunov function and the Lojasiewicz-Simon inequality, we show that any global bounded solution converges to a steady state and get the rate of convergence as well, when damping coefficients are integrally positive and positive-negative, respectively. Moreover, under the assumptions on on-off or sign-changing damping, we derive an asymptotic stability of solutions.

일반구조용 강재(SS 400)기둥부재의 경계조건과 부재 길이변화에 따른 고온 내력의 해석적 연구 (An Analytic Study on Structural Stability according to Boundary Conditions and H-section Column Lengths Made of An Ordinary Grade Structural Steels (SS 400) at High Temperatures)

  • 권인규
    • 한국화재소방학회논문지
    • /
    • 제28권1호
    • /
    • pp.20-25
    • /
    • 2014
  • 강구조 건축물의 기둥부재 내화성능은 접합부의 경계조건과 기둥부재의 길이에 따라 변화되지만, 내화성능 평가는 실험장비의 제약과 기술적 요인으로 인하여 힌지단과 3500 mm 길이 조건으로 이루어지고 있다. 그러나 실제 강구조물에 적용되는 기둥부재는 부지조건과 설계조건에 따라 다양한 경계조건과 길이의 변화를 가져올 수 있으며, 이에 대한 내화성능의 평가는 대상으로 고온 시의 재료특성과 해석적 이론을 바탕으로 고온 시 구조적 성능을 평가하여, 경계조건과 길이 변화에 따른 내화성능의 기본 자료를 도출하였다.

암반의 경계조건을 고려한 절리면 직접전단시험기 개발 (Development of a New Direct Shear Apparatus Considering the Boundary Conditions of Rock Joints)

  • 이영휘;김용준
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.147-157
    • /
    • 2003
  • 사면이나 터널과 같은 암반 구조물의 안정성에 영향을 미치는 절리면은 크게 절리면의 상태(돌기 강도, 충전재, 돌기 경사)와 주위 암반에 의해 구속되는 경계조건에 따라 지배된다. 본 연구에서는 암반 구조물에 작용하는 경계조건 과 절리상태에 따른 전단특성을 규명하기 위하여 PID 알고리즘에 의해 서보제어가 되는 절리면 전단시험 장비를 개발하였다. 그리고 돌기 경사가 일정한 톱니형 형상의 절리면에 대하여 일련의 실험을 수행하여 시험장비의 제어성능을 확인하고 사면이나 터널과 같이 경계조건이 다른 암반구조물에서는 전단강도 평가기법을 달리하여야 함을 알 수 있었다.

Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions

  • Abdelhak, Zohra;Hadji, Lazreg;Daouadji, T. Hassaine;Adda Bedia, E.A.
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.267-291
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal buckling analysis of functionally graded material (FGM) sandwich plates with clamped boundary condition subjected to uniform, linear, and non-linear temperature rises across the thickness direction is developed. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present refined theory. The non-linear governing equations are solved for plates subjected to simply supported and clamped boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling are all discussed.

주기적인 음원에 의한 원형 실린더의 음향 산란 (Acoustic Scattering from Circular Cylinder by Periodic Sources)

  • 이덕주;김용석
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.41-47
    • /
    • 2007
  • Scattering fields of two dimensional acoustic waves by a circular cylinder are investigated. The present numerical approach for the acoustic scattering problem has difficulties of numerical robustness, long-time stability and suitability of far-field boundary treatments. The time-dependent periodic acoustic source is used to analyze Interference patterns between incident waves and waves reflected by the cylinder. Characteristic boundary algorithms coupled with 4th order Modified-Flux-Approach ENO(essentially non-oscillatory) schemes are employed in generalized coordinates to examine the effect of the wane frequency on the interference patterns. Non-reflecting boundary conditions, which is crustal for accurate computations of aeroacoustic problems, are used not to contaminate scattering fields by reflected waves at the outer boundary. Computed scattering fields show the circumferential acoustic modes generated by interacting between acoustic sources and scattered waves. At a lower frequency, the wave passes almost straight through the cylinder without Interacting with circular cylinder. Simulation results are presented and compared with the analytic solution. Computed RMS-pressure distribution on the cylinder wall is good agreement with exact solution.

일차 홀드 방식의 반력 구현 시스템에 대한 안정성 해석 (Stability Analysis of a Haptic System with a First-Order-Hold Method)

  • 이경노
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.389-394
    • /
    • 2014
  • This paper presents the effect of a reflective force computed from a first-order-hold method on the stability of a haptic system. A haptic system is composed of a haptic device with a mass and a damper, a virtual spring, a sampler and a sample-and-hold. The boundary condition of the maximum virtual stiffness is analytically derived by using the Routh-Hurwitz criterion and the condition shows that the maximum virtual stiffness is proportional to the square root of the mass and the damper of a haptic device and also is inversely proportional to the sampling time to the power of three over two. The effectiveness of the derived condition is evaluated by the simulation. When the reflective forces are computed by using the first-order-hold method, the maximum available stiffness to guarantee the stability is increased several hundred times as large as when the zero-order-hold method is applied.

Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

  • Dang, Van-Hieu;Sedighi, Hamid M.;Chan, Do Quang;Civalek, Omer;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • 제78권1호
    • /
    • pp.103-116
    • /
    • 2021
  • In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.

축방향으로 이송되는 부가질량을 가진 보의 안정성 해석 (Stability Analysis of Axially Moving Beam with Attached Mass)

  • 허관도;손인수;안성진
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.56-61
    • /
    • 2012
  • The dynamic instability and natural frequency of axially moving beam with an attached mass are investigated. Thus, the effects of an attached mass on the stability of the moving beam are studied. The governing equation of motion of the moving beam with an attached mass is derived from the extended Hamilton's principle. The natural frequencies are investigated for the moving beams via the Galerkin method under the simple support boundary. Numerical examples show the effects of the attached mass and moving speed on the stability of moving beam. Moreover, the lowest critical moving speeds for the simple supported conditions have been presented. The results can be used in the analysis of axially moving beams with an attached mass for checking the stability.

집단 관막음된 한국표준원전 증기발생기 전열관의 유체탄성불안정성 특성 평가 (Estimation of Fluid-elastic Instability Characteristics on Group Plugged KSNP Steam Generator Tube)

  • 조봉호;유기완;박치용;박수기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.670-676
    • /
    • 2003
  • To investigate the group plugging effect the fluid-elastic instability analysis has been performed on various column and row number of the KSNP steam generator lutes. This study compares the stability ratio of the plugged tube with that of the intact one. The information on the thermal-hydraulic data of the steam generator have been obtained by using the ATHOS3-MOD1 code with and without the thermal energy transfer at the plugged region. Both of the boundary conditions of hot-leg temperature and feedwater mass flow rate are fixed for this investigation. From the results of this study the stability ratios inside the group plugging zone are decreased slightly. At the outside of group plugging zone, however, most of the stability ratios tend to be increased.

  • PDF