DOI QR코드

DOI QR Code

ASYMPTOTIC STABILIZATION FOR A DISPERSIVE-DISSIPATIVE EQUATION WITH TIME-DEPENDENT DAMPING TERMS

  • Yi, Su-Cheol (Department of Mathematics Changwon National University)
  • Received : 2020.09.02
  • Accepted : 2020.10.05
  • Published : 2020.11.15

Abstract

A long-time behavior of global solutions for a dispersive-dissipative equation with time-dependent damping terms is investigated under null Dirichlet boundary condition. By virtue of an appropriate new Lyapunov function and the Lojasiewicz-Simon inequality, we show that any global bounded solution converges to a steady state and get the rate of convergence as well, when damping coefficients are integrally positive and positive-negative, respectively. Moreover, under the assumptions on on-off or sign-changing damping, we derive an asymptotic stability of solutions.

Keywords

Acknowledgement

The author would like to deeply thank all the reviewers for their insightful and constructive comments.

References

  1. Z. Artstein and E. F. Infante, On the asymptotic stability of oscillators with unbounded damping, Q. Appl. Math., 34 (1976), 195-199. https://doi.org/10.1090/qam/466789
  2. I. L. Bogolubsky, Some examples of inelastic soliton interaction, Comput. Phys. Commun., 13 (1997), no. 3, 149-155. https://doi.org/10.1016/0010-4655(77)90009-1
  3. P. A. Clarkson, R. J. Leveque and R. A. Saxton, Solitary wave interaction in elastic rods, Stud. Appl. Math., 75 (1986), 95-122. https://doi.org/10.1002/sapm198675295
  4. H. Di and Y. Shang, Global existence and asymptotic behavior of solutions for the double dispersive-dissipative wave equation with nonlinear damping and source terms, Bound. Value Probl., 2015 (2015), no. 1, 15pages. https://doi.org/10.1186/s13661-014-0275-3
  5. G. Fragnelli and D. Mugnai, Stability of solutions for some classes of nonlinear damped wave equations, SIAM J. Control Optim., 47 (2008), 2520-2539. https://doi.org/10.1137/070689735
  6. G. Fragnelli and D. Mugnai, Stability of solutions for nonlinear wave equations with a positive-negative damping, Discrete Cont. Dyn-S, 4 (2011), 615-622.
  7. F. Gazzola and M. Squassina, Global solutions and finite time blowup for damped semilinear wave equations, Ann. I. H. Poincare-AN, 23 (2006), no. 2, 185-207. https://doi.org/10.1016/j.anihpc.2005.02.007
  8. A. Haraux, Systemes dynamiques dissipatifs et applications, Masson, 1991.
  9. A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Dif., 9 (1999), 95-124. https://doi.org/10.1007/s005260050133
  10. A. Haraux and M. A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asymptotic Anal., 26 (2001), 21-36.
  11. A. Haraux, P. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second-order evolution equations, SIAM J. Control Optim., 43 (2005), 2089-2108. https://doi.org/10.1137/S0363012903436569
  12. I. B. Hassen and A. Haraux, Convergence and decay estimates for a class of second order dissipative equations involving a non-negative potential energy, J. Funct. Anal., 260 (2011), 2933-2963. https://doi.org/10.1016/j.jfa.2011.02.010
  13. L. Hatvani, Stability of zero solution of certain second-order nonlinear differential equations, Acta. Sci. Math., 32 (1971), 1-9.
  14. L. Hatvani and V. Totik, Asymptotic stability of the equilibrium of the damped oscillator, Differ. Integral Euq., 6 (1993), 835-848.
  15. M. Hayes and G. Saccomandi, Finite amplitude transverse waves in special incompressible viscoelastic solids, J. Elasticity, 59 (2000), 213-225. https://doi.org/10.1023/A:1011081920910
  16. M. A. Jendoubi, Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity, J. Differ. Equations., 144 (1998), 302-312. https://doi.org/10.1006/jdeq.1997.3392
  17. Z. Jiao, Convergence of global solutions for some classes of nonlinear damped wave equations, preprint, (2013), arXiv: 1309.2364.
  18. W. Liu, Global existence and uniform decay of solutions for a system of wave equations with dispersive and dissipative terms, Front. Math. China, 5 (2010), 555-574. https://doi.org/10.1007/s11464-010-0060-2
  19. A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambridge University Press, 2013.
  20. P. Pucci and J. Serrin, Asymptotic stability for intermittently controlled nonlinear oscillators, SIAM J. Math. Anal., 25 (1994), 815-835. https://doi.org/10.1137/S0036141092240679
  21. R. Quintanilla and G. Saccomandi, Spatial behavior for a fourth-order dispersive equation, Q. Appl. Math., 2006 (2006), 547-560.
  22. C. E. Seyler and D. L. Fanstermacher, A symmetric regularized long wave equation, Phys. Fluids, 27 (1984), 4-7. https://doi.org/10.1063/1.864487
  23. R. A. Smith, Asymptotic stability of x" + a(t)x' + x = 0, Quart. J. Math., 12 (1961), 123-126. https://doi.org/10.1093/qmath/12.1.123
  24. P. Villaggio, Mathematical models for elastic structures, Cambridge University Press, 2005.
  25. S. T. Wu, Asymptotic behavior of solutions for nonlinear wave equations of Kirchhoff type with a positive-negative damping, Appl. Math. Lett., 25 (2012), 1082-1086. https://doi.org/10.1016/j.aml.2012.03.022
  26. R. Xu and Y. Yang, Finite time blow-up for the nonlinear fourth-order dispersivedissipative wave equation an high energy level, Int. J. Math., 23 (2012), no. 5, 10 pages. DOI: 10.1142/S0129167X12500607
  27. R. Xu, X. Zhao and J. Shen, Asymptotic behavior of solution for fourth order wave equation with dispersive and dissipative terms, Appl. Math. Mech-En., 29 (2008), 259-262. https://doi.org/10.1007/s10483-008-0213-y