DOI QR코드

DOI QR Code

VARIOUS CENTROIDS OF QUADRILATERALS WITHOUT SYMMETRY

  • Kim, Incheon (Department of Mathematics Chonnam National University) ;
  • Kim, Dong-Soo (Department of Mathematics Chonnam National University)
  • Received : 2020.08.22
  • Accepted : 2020.10.05
  • Published : 2020.11.15

Abstract

For a quadrilateral P, we consider the centroid G0 of the vertices of P, the perimeter centroid G1 of the edges of P and the centroid G2 of the interior of P, respectively. It is well known that P satisfies G0 = G1 or G0 = G2 if and only if it is a parallelogram. In this paper, we investigate various quadrilaterals satisfying G1 = G2. As a result, we establish some characterization theorems. One of them asserts the existence of convex quadrilaterals satisfying G1 = G2 without symmetry.

Keywords

References

  1. Ahn, S. H., Jeong, J. S. and Kim, D.-S., Perimeter centroids and circumscribed quadrangles, Honam Math. J., 39 (2017), no. 1, 127-136. https://doi.org/10.5831/HMJ.2017.39.1.127
  2. Edmonds, Allan L., The center conjecture for equifacetal simplices, Adv. Geom., 9 (2009), no. 4, 563-576. https://doi.org/10.1515/ADVGEOM.2009.027
  3. Johnson, R. A., Modem Geometry, Houghton-Mifflin Co., New York, 1929.
  4. Kaiser, Mark J., The perimeter centroid of a convex polygon, Appl. Math. Lett., 6 (1993), no. 3, 17-19. https://doi.org/10.1016/0893-9659(93)90025-I
  5. Khorshidi, B., A new method for finding the center of gravity of polygons, J. Geom., 96 (2009), no. 1-2, 81-91. https://doi.org/10.1007/s00022-010-0027-1
  6. Kim, D.-S. and Kim, D. S., Centroid of triangles associated with a curve, Bull. Korean Math. Soc., 52 (2015), 571-579. https://doi.org/10.4134/BKMS.2015.52.2.571
  7. Kim, D.-S. and Kim, Y. H., On the Archimedean characterization of parabolas, Bull. Korean Math. Soc., 50 (2013), no. 6, 2103-2114. https://doi.org/10.4134/BKMS.2013.50.6.2103
  8. Kim, D.-S., Kim, W., Lee, K. S. and Yoon, D. W., Various centroids of polygons and some characterizations of rhombi, Commun. Korean Math. Soc., 32 (2017), no. 1, 135-145. https://doi.org/10.4134/CKMS.c160023
  9. Kim, D.-S. and Kim, Y. H. and Park, S., Center of gravity and a characterization of parabolas, Kyungpook Math. J., 55 (2015), 473-484. https://doi.org/10.5666/KMJ.2015.55.2.473
  10. Kim, D.-S., Lee, K. S., Lee, K. B., Lee, Y. I., Son, S., Yang, J. K. and Yoon, D. W., Centroids and some characterizations of parallelograms, Commun. Korean Math. Soc., 31 (2016), no. 3, 637-645. https://doi.org/10.4134/CKMS.c150165
  11. Kim, W., Kim, D.-S., Kim, S. and Lim S. Y., Perimeter centroids of quadrilaterals, Honam Math. J., 39 (2017), no 3, 431-442. https://doi.org/10.5831/HMJ.2017.39.3.431
  12. Krantz, Steven G., A matter of gravity, Amer. Math. Monthly, 110 (2003), 465-481. https://doi.org/10.1080/00029890.2003.11919985
  13. Krantz, Steven G., McCarthy, John E. and Parks, Harold R., Geometric characterizations of centroids of simplices, J. Math. Anal. Appl., 316 (2006), no. 1, 87-109. https://doi.org/10.1016/j.jmaa.2005.04.046
  14. Lee, S., Kim, D.-S. and Park, H., Various centroids of quadrilaterals, Honam Math. J., 39 (2017), no 2, 247-258. https://doi.org/10.5831/HMJ.2017.39.2.247
  15. Stein, S., Archimedes. What did he do besides cry Eureka?, Mathematical Association of America, Washington, DC, 1999.