• Title/Summary/Keyword: terminal constraints

Search Result 87, Processing Time 0.026 seconds

Improved Gauss Pseudospectral Method for UAV Trajectory Planning with Terminal Position Constraints

  • Qingquan Hu;Ping Liu;Jinfeng Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.563-575
    • /
    • 2023
  • Trajectory planning is a key technology for unmanned aerial vehicles (UAVs) to achieve complex flight missions. In this paper, a terminal constraints conversion-based Gauss pseudospectral trajectory planning optimization method is proposed. Firstly, the UAV trajectory planning mathematical model is established with considering the boundary conditions and dynamic constraints of UAV. Then, a terminal constraint handling strategy is presented to tackle terminal constraints by introducing new penalty parameters so as to improve the performance index. Combined with Gauss-Legendre collocation discretization, the improved Gauss pseudospectral method is given in detail. Finally, simulation tests are carried out on a four-quadrotor UAV model with different terminal constraints to verify the performance of the proposed method. Test studies indicate that the proposed method performances well in handling complex terminal constraints and the improvements are efficient to obtain better performance indexes when compared with the traditional Gauss pseudospectral method.

Pontryagin's Minimum Principle Applied to a Double Capacitive Thermal System (최소원리의 적용에 의한 이중열용량계의 최적계속온도제어방식에 관한 연구)

  • Se Hoon Chang
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.31-40
    • /
    • 1972
  • This study intends to investigate the optimal switching modes of a double-capacitive thermal system under different constraints on the state and the control variable, by the application of the Pontryagin's Minimum Principle. Throughout the development, the control effort is assumed to have two modes of state: M or zero and the terminal times being fixed. In the first part of this study, the Principle is discussed under various conditions for this particular problem, with different criterion functions and in the same time imposing a certain constraints; i) on the terminal states, ii) on functions of the terminal states. Depending upon the upper bound value of the control vector, possible driving modes of the states are studied from which particular optimal driving modes are extracted so as to meet the specified constraints and boundary conditions imposed in the problem. Numerical solutions are evaluated for an over0damped, double-capacitive thermal plant and the optimal solutions: the switching mode, the optimal switching time, and the control effort are compared with the analytical results, in the second part of this work, to confirm the development.

  • PDF

A Globally Stabilizing Model Predictive Controller for Neutrally Stable Linear Systems with Input Constraints

  • Yoon, Tae-Woong;Kim, Jung-Su;Jadbabaie, Ali;Persis, Claudio De
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1901-1904
    • /
    • 2003
  • MPC or model predictive control is representative of control methods which are able to handle physical constraints. Closed-loop stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system is neutrally stable, and if the constraints are imposed only on the input, global aymptotic stability can be obtained; until recently, use of infinite horizons was thought to be inevitable in this case. A globally stabilizing finite-horizon MPC has lately been suggested for neutrally stable continuous-time systems using a non-quadratic terminal cost which consists of cubic as well as quadratic functions of the state. The idea originates from the so-called small gain control, where the global stability is proven using a non-quadratic Lyapunov function. The newly developed finite-horizon MPC employs the same form of Lyapunov function as the terminal cost, thereby leading to global asymptotic stability. A discrete-time version of this finite-horizon MPC is presented here. The proposed MPC algorithm is also coded using an SQP (Sequential Quadratic Programming) algorithm, and simulation results are given to show the effectiveness of the method.

  • PDF

Impact Angle Control Guidance Synthesis for Evasive Maneuver against Intercept Missile

  • Yogaswara, Y.H.;Hong, Seong-Min;Tahk, Min-Jea;Shin, Hyo-Sang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.719-728
    • /
    • 2017
  • This paper proposes a synthesis of new guidance law to generate an evasive maneuver against enemy's missile interception while considering its impact angle, acceleration, and field-of-view constraints. The first component of the synthesis is a new function of repulsive Artificial Potential Field to generate the evasive maneuver as a real-time dynamic obstacle avoidance. The terminal impact angle and terminal acceleration constraints compliance are based on Time-to-Go Polynomial Guidance as the second component. The last component is the Logarithmic Barrier Function to satisfy the field-of-view limitation constraint by compensating the excessive total acceleration command. These three components are synthesized into a new guidance law, which involves three design parameter gains. Parameter study and numerical simulations are delivered to demonstrate the performance of the proposed repulsive function and guidance law. Finally, the guidance law simulations effectively achieve the zero terminal miss distance, while satisfying an evasive maneuver against intercept missile, considering impact angle, acceleration, and field-of-view limitation constraints simultaneously.

A New Technique for Solving Optimal Control Problems of the Time-delayed Systems

  • Ghomanjani, Fateme
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.333-346
    • /
    • 2018
  • An approximation scheme utilizing Bezier curves is considered for solving time-delayed optimal control problems with terminal inequality constraints. First, the problem is transformed, using a $P{\acute{a}}de$ approximation, to one without a time-delayed argument. Terminal inequality constraints, if they exist, are converted to equality constraints. A computational method based on Bezier curves in the time domain is then proposed for solving the obtained non-delay optimal control problem. Numerical examples are introduced to verify the efficiency and accuracy of the proposed technique. The findings demonstrate that the proposed method is accurate and easy to implement.

The Admissible Multiperiod Mean Variance Portfolio Selection Problem with Cardinality Constraints

  • Zhang, Peng;Li, Bing
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • Uncertain factors in finical markets make the prediction of future returns and risk of asset much difficult. In this paper, a model,assuming the admissible errors on expected returns and risks of assets, assisted in the multiperiod mean variance portfolio selection problem is built. The model considers transaction costs, upper bound on borrowing risk-free asset constraints, cardinality constraints and threshold constraints. Cardinality constraints limit the number of assets to be held in an efficient portfolio. At the same time, threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Because of these limitations, the proposed model is a mix integer dynamic optimization problem with path dependence. The forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, to evaluate the model, our result of a meaning example is compared to the terminal wealth under different constraints.

NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR CONTROL SYSTEMS DESCRIBED BY INTEGRAL EQUATIONS WITH DELAY

  • Elangar, Gamal-N.;Mohammad a Kazemi;Kim, Hoon-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.625-643
    • /
    • 2000
  • In this paper we formulate an optimal control problem governed by time-delay Volterra integral equations; the problem includes control constraints as well as terminal equality and inequality constraints on the terminal state variables. First, using a special type of state and control variations, we represent a relatively simple and self-contained method for deriving new necessary conditions in the form of Pontryagin minimum principle. We show that these results immediately yield classical Pontryagin necessary conditions for control processes governed by ordinary differential equations (with or without delay). Next, imposing suitable convexity conditions on the functions involved, we derive Mangasarian-type and Arrow-type sufficient optimality conditions.

  • PDF

RHC based Looper Control for Hot Strip Mill (RHC를 기반으로 하는 열간압연 루퍼 제어)

  • Park, Cheol-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.295-300
    • /
    • 2008
  • In this paper, a new looper controller is proposed to minimize the tension variation of a strip in the hot strip finishing mill. The proposed control technology is based on a receding horizon control (RHC) to satisfy the constraints on the control input/state variables. The finite terminal weighting matrix is used instead of the terminal equality constraint. The closed loop stability of the RHC for the looper system is analyzed to guarantee the monotonicity of the optimal cost. Furthermore, the RHC is combined with a 4SID(Subspace-based State Space System Identification) model identifier to improve the robustness for the parameter variation and the disturbance of an actuator. As a result, it is shown through a computer simulation that the proposed control scheme satisfies the given constraints on the control inputs and states: roll speed, looper current, unit tension, and looper angle. The control scheme also diminishes the tension variation for the parameter variation and the disturbance as well.

Barrier Free Design Methods applied in Passenger Terminals based on Characteristics of Transportation Poor & Barrier Free Elements - Focused on the Gunsan International*Coastal Passenger Boat Terminal - (교통약자의 행동특성과 이동편의시설 설치요소를 통한 여객시설 디자인방법에 관한 연구 - 군산 국제·연안여객선 터미널을 대상으로 -)

  • Park, Byung Min;Shim, Eun Ju
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.344-356
    • /
    • 2013
  • Due to implementation of legislations for translation poor such as handicapped people, elderlies, children most public buildings are now integrating barrier free design methods. However, barrier free design is still considered as constraints of physical elements that only serve to meet functional aspects for minors and conflict with designs of the space. The authors believe that it is time that barrier free design is considered not as constraints but opportunities that both meet functional and aesthetical needs serving the growing population of transportation poor and others as well. This paper has looked into characteristics of transportation poor and barrier free design elements of passenger terminals and developed 4 categories of design methods. applied by using human sense, form, furniture, and architectural elements. Then the authors analyzed Gunsan International and coastal passenger terminal existing conditions which is considered to be designed to meet barrier free guidelines and legislations through the developed design categories and elements. The result turned out that the subject in regard of barrier free designs for transportation poor lack various applications such as forms that can be used as symbolic and directional elements that assists as wayfinding cues. Also, flexible and multi functional approaches in furniture arrangements, structural approaches are needed.

Algorithms and Programs for Optimization of Large-Scale Dynamic System (대형동적 시스템의 최적화 앨고리즘 및 프로그램 개발에 관한 연구)

  • 양흥석;박영문;김건중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.4
    • /
    • pp.121-127
    • /
    • 1983
  • In this paper an efficient algorithm for Pontriagin's maximum principle is developed. Fletcher-Powell method is adopted as optimization technique which shows fast and stable convergence characteristics. Terminal constraints are alse considered by using Hestens' algorithm and penalty function method together. Control variable inequality constraints are also considered by using Gradient Projection technique combined with Flectcher-Powell method. Test experiment shows good and reliable results.

  • PDF