References
- H. Allouche and A. Tazdayte, Numerical solution of singular boundary value problems with logarithmic singularities by pade approximation and collocation methods, J. Comput. Appl. Math., 311(2017), 324-341.
- H. Banks, Approximation of nonlinear functional differential equation control systems, J. Optim. Theory Appl., 29(1979), 383-408. https://doi.org/10.1007/BF00933142
- M. Basin and J. Perez, An optimal regulator for linear systems with multiple state and input delays, Optimal Control Appl. Methods, 28(2007), 45-57. https://doi.org/10.1002/oca.779
- M. Basin and J. Rodriguez-Gonzalez, Optimal control for linear systems with multiple time delays in control input, IEEE Trans. Automat. Control, 51(1)(2006), 91-97. https://doi.org/10.1109/TAC.2005.861718
- F. Ghomanjani, A new approach for solving fractional differential-algebric equations, J. Taibah Univ. Sci., 11(2017), 1158-1164. https://doi.org/10.1016/j.jtusci.2017.03.006
- F. Ghomanjani, M. H. Farahi and M. Gachpazan, Bezier control points method to solve constrained quadratic optimal control of time varying linear systems, Comput. Appl. Math., 31(3)(2012), 433-456. https://doi.org/10.1590/S1807-03022012000300001
- G. L. Kharatishdi, The maximum principle in the theory of optimal processes with time lags, Doll. Akad, 136(1961), 39-43.
- N. N. Krasovskii, On the analytic construction of an optimal control in a system with time lags, Prickl. Mat. Mech., 26(1962), 39-51.
- J. P. LaSalle, The time optimal control problem, Contributions to the Theory of Nonlinear Oscillations V, Princeton Univ. Press, Princeton, N.J., (1960), 1-24.
- A. Nazemi and M. Mansoori, Solving optimal control problems of the time-delayed systems by Haar wavelet, J. Vib. Control, 22(2016), 2657-2670. https://doi.org/10.1177/1077546314550698
- M. N. Oguztoreli, A time optimal control problem for systems described by differential difference equations, J. Soc. Indust. Appl. Math. Ser. A Control, 1(1963), 290-310. https://doi.org/10.1137/0301017
- D. W. Ross, Optimal control of systems described by differential difference equations, Ph.D. dissertiation, Dept of Elec. Enery., Stanford University, Stanford, Calif, 1968.
- K. Wong, D. Clements and K. Teo, Optimal control computation for nonlinear time-lag systems, J. Optim. Theory Appl., 47(1985), 91-107. https://doi.org/10.1007/BF00941318
- C. Wu, K. L. Teo, R. Li, and Y. Zhao, Optimal control of switched systems with time delay, Appl. Math. Lett., 19(2006), 1062-1067. https://doi.org/10.1016/j.aml.2005.11.018