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Abstract: MPC or model predictive control is representative of control methods which are able to handle physical constraints.

Closed-loop stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system

is neutrally stable, and if the constraints are imposed only on the input, global aymptotic stability can be obtained; until

recently, use of infinite horizons was thought to be inevitable in this case. A globally stabilizing finite-horizon MPC has lately

been suggested for neutrally stable continuous-time systems using a non-quadratic terminal cost which consists of cubic as

well as quadratic functions of the state. The idea originates from the so-called small gain control, where the global stability is

proven using a non-quadratic Lyapunov function. The newly developed finite-horizon MPC employs the same form of Lyapunov

function as the terminal cost, thereby leading to global asymptotic stability. A discrete-time version of this finite-horizon MPC

is presented here. The proposed MPC algorithm is also coded using an SQP (Sequential Quadratic Programming) algorithm,

and simulation results are given to show the effectiveness of the method.
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1. Introduction

MPC or model predictive control is a receding horizon strat-

egy, where the control is computed via an optimization pro-

cedure at every sampling instant. It is therefore possible to

handle physical constraints on the input and/or state vari-

ables through the optimization[1]. Over the last decade,

there have been many stability results on constrained MPC.

Moreover, explicit solutions to constrained MPC are pro-

posed recently[2], [3]. Theses results reduce on-line compu-

tational burden regarded as a main drawback of MPC and

extend the applicability of MPC to faster plants as in elec-

trical applications.

Particular attention is paid in this paper to input-

constrained systems as almost all real processes are subject

to actuator saturation. Generally, it is not possible to stabi-

lize input-constrained plants globally. However, if the uncon-

strained part of the system is neutrally stable1, then global

stabilization can be achieved. A typical example is the so-

called small gain control[4], [5], [6]; it is noted that the Lya-

punov functions used for stability analysis are non-quadratic

functions containing cubic as well as quadratic terms.

Global stabilization of input-constrained neutrally stable

systems is also possible via MPC; see e.g. [7]. As in [7],

use of infinite horizons is generally thought to be inevitable.

However, infinite horizon MPC can cause trouble in practice.

For implementation, the optimization problem should be re-

1All eigenvalues lie within the unit circle and those on the unit circle are

simple.

formulated as a finite horizon MPC with a variable horizon,

and it is not possible to predetermine a finite upper bound

on the horizon.

It is only fairly recently that globally stabilizing finite hori-

zon MPC has been proposed for continuous-time neutrally

stable systems[13]. This late achievement is based on two ob-

servations; firstly, the stability of an MPC system is mostly

proved by showing that the terminal cost is a Lyapunov func-

tion[1], [8]. Secondly, the global stabilization of an input-

constrained neutrally stable system can be achieved by us-

ing a non-quadratic Lyapunov function as mentioned above.

By making use of these two facts, a new finite horizon MPC

has been suggested in [13], where a non-quadratic Lyapunov

function as in [4], [5], [6] is employed as the terminal cost,

thereby guaranteeing the closed-loop stability. Here, we

present a discrete-time version of this newly developed finite-

horizon MPC in [13]. The proposed MPC algorithm is also

coded using the SQP, and simulation results are given to

show the effectiveness of the method.

2. An overview of MPC

Following [1], a brief summary on MPC is given in this sec-

tion. Consider a discrete-time system described by

x(k + 1) = Ax(k) +Bu(k)

where x(k) ∈ Rn and u(k) ∈ Rm are the state and input,

and (A,B) is assumed to be controllable. Defining

u(k) = {u(k|k), u(k + 1|k), · · · , u(k +N − 1|k)},



the MPC law is obtained by minimizing with respect to u(k)

JN (x(k),u(k))

=

N−1
∑

i=0

l(x(k + i|k), u(k + i|k)) + V (x(k +N |k))

subject to

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k), x(k|k) = x(k)

x(k + i+ 1|k) ∈ X , u(k + i|k) ∈ U , i ∈ [0, N − 1]

x(k +N |k) ∈ Xf

where

l(x(k + i|k), u(k + i|k))

= x(k + i|k)TQx(k + i|k) + u(k + i|k)T
Ru(k + i|k) (1)

with Q and R being positive definite, V (x(k + N |k)) is the

terminal cost, the sets U , X represent the input and state

constraints, and x(k + N |k) ∈ Xf is the artificial terminal

constraint employed for stability guarantees. Note that V (x)

and Xf are chosen such that V (x) is a control Lyapunov

function in Xf . The entire procedure is repeated at each

sampling instant, i.e.

u(k) = u
∗(k|k)

where u∗(k+ i|k) is the optimal value of u(k+ i|k). The sta-

bility properties of the resulting closed-loop are summarized

below.

Theorem 1: [1] For some local controller kf : Xf→ R, sup-

pose the following:

A1. Xf is closed and 0 ∈ Xf ;

A2. kf (x) ∈ U , ∀x ∈ Xf ;

A3. Xf is invariant, i.e, Ax+Bkf (x) ∈ Xf , ∀x ∈ Xf ;

A4. V (Ax+Bkf (x))− V (x) + l(x, kf (x)) ≤ 0, ∀x ∈ Xf .

Then the optimization problem is guaranteed to be feasible

for all k ≥ 0 as long as the initial state x(0) can be steer-

able to Xf in N steps or less (i.e. the problem is feasible

initially). In addition, the optimal cost J∗(k) at time k, i.e.

the minimal value of JN (x(k),u(k)) satisfies

J
∗(k + 1)− J

∗(k) + l(x(k), u∗(k|k)) ≤ 0,

thereby ensuring asymptotic stability of the closed-loop.

Outline of proof : Suppose that

u
∗(k) = {u∗(k|k), · · · , u∗(k +N − 1|k)}

is the optimal (and thus feasible) u(k) obtained at time k,

and consider

ũ(k+1)={u∗(k+1|k), · · · , u∗(k+N−1|k), kf (x
∗(k+N |k))}

where

x
∗(k+ i+1|k) = Ax

∗(k+ i|k)+Bu
∗(k+ i|k), i ∈ [0, N −1].

Note that x∗(k+1|k) = x(k+1) as u∗(k|k) = u(k) and that

x∗(k + N |k) ∈ Xf . It then follows from A1 and A2 that

ũ(k + 1) is also feasible at time k + 1, i.e. the feasibility of

the problem at time k+1 is guaranteed by the feasibility at

time k. Also from

J
∗(k+1) = JN (x(k+1),u∗(k+1)) ≤ JN (x(k+1), ũ(k+1)),

we have

J
∗(k + 1) ≤ JN (x(k + 1), ũ(k + 1)) =

J
∗(k)− l(x(k), u∗(k|k)) + l(x∗(k +N |k), xf (x

∗(k +N |k))

+V (Ax∗(k +N |k)+Bkf (x
∗(k +N |k)))− V (x∗(k +N |k)).

The proof is now completed in view of A.4. ¥

This theorem shows that if Xf is a feasible and invariant

set for x(k + 1) = Ax(k) + Bkf (x(k)), MPC is stabilizing

and its domain of attraction is the set of the initial state

vectors which can be steerable to Xf in N steps or less.

An interesting consequence is that the MPC can be globally

stabilizing if kf (x) is found such that Xf = Rn. This is

in fact possible if the unconstrained plant is neutrally stable

and if constraints are imposed only on the input, i.e. X = Rn,

as discussed on small gain control in the introduction.

3. A non-quadratic Lyapunov function for

global stability

We first present a slight extension of the previous results

[4], [5], in which the case where all poles are simple on the

unit circle is considered first and then the general case for

neutrally stable systems is handled via coordinate transfor-

mations. On the other hand, neutrally stable systems are

directly dealt with in this paper.

Consider the following neutrally stable plant

x
+ = Ax+Bsat(u) (2)

where x+ is the successor state (i.e. the state at the next

sampling instant), sat(·) is the usual saturation function as

in [9], (A,B) is controllable and all the eigenvalues of A lie

within and on the unit circle with those on the unit circle

being simple. It then follows that there exists a positive

definite matrix Mc satisfying

A
T
McA−Mc ≤ 0.

Now the globally stabilizing small gain control is given by

u = −κBT
McAx (3)

where κ (> 0) satisfies

2κBT
McB < I.

This control law is similar to those in [4], [5], [10]. It can

then be shown that there exists a positive definite matrix

Mq such that

(A− κBB
T
McA)

T
Mq(A− κBB

T
McA)−Mq = −I.

The stability properties of the resulting closed-loop are given

below.



Theorem 2: For the closed-loop system (2) and (3), there

exists a Lyapunov function W (x) such that

W (x) = Wq(x) + λWc(x) = xTMqx+ λ(xTMcx)
3
2 (4)

W (x+)−W (x) ≤ −‖x‖2

for some positive λ.

Proof : Note that the Lyapunov function (4) consists of a

cubic term (Wc(x)) as well as a conventional quadratic term

(Wq(x)). We first consider the difference of the quadratic

term Wq along the trajectory, which is given by

Wq(x
+)−Wq(x) ≤ −‖x‖

2 + 2a1‖x‖u
T
σ(u)

where a1 = σmax(A
TMqB) with σmax denoting the maxi-

mum singular value. Then, after some manipulations similar

to those in [4], we obtain the difference of the cubic term Wc

as follows:

Wc(x
+)−Wc(x) ≤ −

a2

κ
‖x‖uT

σ(u)

where a2 =
√

λmin(Mc) with λmin denoting the minimum

eigenvalue. From these differences of the quadratic and cubic

components of the Lyapunov function, it is clear that if λ is

set to

λ =
2κσmax(A

T
c MqB)

√

λmin(Mc)
,

then we have

W (x+)−W (x) = Wq(x
+)−Wq(x) + λ(Wc(x

+)−Wc(x))

≤ −‖x‖2.

This completes the proof. ¥

4. A globally stabilizing MPC

On the basis of the discussions in sections 2 and 3, we derive

a globally stabilizing MPC for the plant in (2) here. The key

idea is to use a non-quadratic function of the form (4) as the

terminal cost; since (4) is a global Lyapunov function, the

resulting MPC can be globally stabilizing in view of A4 of

Theorem 1. We are now in a position to present our main

theorem below.

Theorem 3: Consider the neutrally stable plant (2) and the

following MPC law:

JN (x(k),u(k))

=

N−1
∑

i=0

l(x(k + i|k), u(k + i|k)) + V (x(k +N |k))

subject to

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k), x(k|k) = x(k)

u(k + i|k) = sat(u(k + i|k)), i ∈ [0, N − 1]

where

V (x(k +N |k)) = εW (x(k +N |k)),

and l(x, u) and W (x) are defined as in equations (1) and (4),

respectively. Then, given any positive integer N , the closed-

loop is globally asymptotically stable for some positive ε.

Proof : Note that this theorem holds if all the assumptions

in A.1-A.4 of Theorem 1 are satisfied for Xf = X = Rn.

Since assumptions A.1-A.3 trivially hold, what remains is

to find ε such that assumption A.4 is satisfied. To this end,

choose

kf (x) = −sat(κB
T
McAx),

and consider

l(x, kf (x)) ≤ x
T
Qx+ κ

2
x

T
A

T
McBRB

T
McAx

≤ λmax(Q+ κ
2
A

T
McBRB

T
McA)‖x‖

2
.

Hence, if ε is chosen such that

ε ≥ λmax(Q+ κ
2
A

T
McBRB

T
McA),

then we have

V (Ax∗(k +N |k)+Bkf (x
∗(k +N |k)))− V (x∗(k +N |k))

≤ −l(x∗(k +N |k), xf (x
∗(k +N |k)).

This finally leads to

J
∗(k + 1)− J

∗(k) ≤ −l(x(k), u(k))

for all x(k) ∈ Rn. ¥

Remark 1: The proposed MPC is no longer a quadratic

programming (QP) optimization problem. However, it is

still convex, and can thus be dealt with effectively via var-

ious convex optimization solvers. For example, we employ

an SQP(Sequential Quadratic Programming) algorithm for

simulations of the next section.

Remark 2: In [7], infinite horizon MPC is needed in order

to achieve global asymptotic stability. However, any fixed

finite horizon can be used in the proposed MPC.

Remark 3: Recently some results have been presented on

stability of nonlinear systems in the sense of ISS (Input to

State Stability) or iISS (integral Input to State Stability).

Among these is an interesting report proving that global

stability is equivalent to iISS in discrete-time[11]. Hence the

proposed MPC is actually integral input to state stabiliz-

ing, i.e. the state of the resulting closed-loop is guaranteed

to be bounded even in the presence of an external distur-

bance provided that the disturbance has bounded energy. A

consequence of this iISS property is that it will be possi-

ble to design a switching-based adaptive MPC for uncertain

input-constrained neutrally stable systems. See e.g. [12] and

[14] for switching-based adaptive control of nonlinear sys-

tems with iISS properties.

5. Simulation

To demonstrate the effectiveness of the proposed MPC

scheme, we consider the following plant

x
+ =

[

1 1

0 0.8

]

x+

[

0

1

]

u, − 1 ≤ u ≤ 1.

Note that the unconstrained part of the system is neutrally

stable with one integrator. For implementation, we employ



an SQP algorithm in the optimization toolbox for Matlab.

The MPC parameters used in the simulation are summarized

below.

N = 3, Q =

[

1 0

0 1

]

, R = 0.8,

Mc =

[

0.06 0.3

0.3 2

]

, κ =
0.95

2λmax(BTMcB)
,

ε = λmax(Q+ κ
2
A

T
McBRB

T
McA).

As shown in figures 1 and 2, the proposed MPC success-

fully stabilizes the neutrally stable plant while satisfying the

saturation constraint.
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Fig. 2. Control input

6. Conclusion

In this paper, a finite horizon MPC is proposed, which glob-

ally stabilizes discrete-time neutrally stable linear systems

subject to input constraints. The global stabilization is

achieved by employing a non-quadratic function as the ter-

minal cost, which consists of cubic as well as quadratic func-

tions of the state. This is a discrete-time version of a recent

work for continuous-time systems, and is to form a basis

for switching-based adaptive MPC of input-constrained neu-

trally stable systems.
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