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RHC based Looper Control for Hot Strip Mill

ub M
(Cheol Jae Park)

Abstract : In this paper, a new looper controller is proposed to minimize the tension variation of a strip in the hot strip finishing mill.
The proposed control technology is based on a receding horizon control (RHC) to satisfy the constraints on the control input/state
variables. The finite terminal weighting matrix is used instead of the terminal equality constraint. The closed loop stability of the
RHC for the looper system is analyzed to guarantee the monotonicity of the optimal cost. Furthermore, the RHC is combined with a
4SID(Subspace-based State Space System Identification) model identifier to improve the robustness for the parameter variation and
the disturbance of an actuator. As a result, it is shown through a computer simulation that the proposed control scheme satisfies the
given constraints on the control inputs and states: roll speed, looper current, unit tension, and looper angle. The control scheme also
diminishes the tension variation for the parameter variation and the disturbance as well.
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I. Introduction
It is well known that the strip quality in the hot strip mill is
considerably influenced on a strip tension in the finishing mill
[1,2]. The strip tension is mainly caused by the difference of a

strip speed which is controlled by a main motor and a looper angle.

An unbalanced strip speed often turns to a high(or loose) tension
which causes the strip breakage. As a result, it affects the accuracy
of product thickness, width, shape, and so on. Thus, this paper
studies on a new tension control system for the looper which plays
an important role in absorbing the unbalanced strip speed, and
keeps the strip tension at its target value [3,4].

In a real plant, most of the looper-tension control systems are a
conventional PI control type, which had been applied before a
tension meter was invented, so there is no strip tension feedback.
Furthermore, there is no compensation of the interaction [5,6]
between the looper angle and the tension, and it is very weak to
uncertainties. Therefore, the compensation algorithms and gain
tables of many controllers are necessary, in particular the gain
tables should be continuously tuned to obtain the robust stability
and performances.

To improve the defects of the conventional P control, the
MIMO(Multi-Input and Multi-Output) [7,8] control has been
studied since 1990s [9,10], of which the remarkable results
include an inverse linear quadratic optimal control(ILQ) [11,12],
robust He control [13], model predictive controlMPC) [14], and
so on. It is confirmed through the practical application that the
above MIMO control systems can effectively consider the
interaction between the tension and the looper angle, and
considerably improve the control performances. However, they
have an unavoidable trade-off between the hardware
implementation including sensor/actuator saturation and the
robustness for stability and performances. Though the ILQ
optimal control has a simple controller structure and its gains can
be tuned very easily, it has a weak robustness with respect to the
uncertainty of modeling errors and disturbances, and so on. He.
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control has a good robustness for the uncertainty, but the
constraints on the control input/state are not analytically
considered. Until now, MPC with terminal equality constraint that
all states should go to the origin within a finite horizon was
utilized to guarantee the stability for the looper-tension system
[14]. However, there is not so much flexibility in choosing the
control input to satisfy the terminal equality constraint [15].

In this paper, a new RHC(receding horizon control) scheme
combined with a subspace identifier is proposed for the looper-
tension system. It satisfies some constraints on control inputs and
robustness for parameter variations and disturbances [16]. A
looper-tension dynamics is introduced as a state space
representation which is obtained from a linear approximation of
nonlinear dynamics. On the basis of the obtained state space
model, an RHC is developed for the looper-tension system and the
finite terminal weighting matrix is used instead of the terminal
equality constraint [17]. The RHC controller can handle the
constraints on the control input/state and guarantee the stability of
the looper-tension system. The parameter variations are caused by
a Young’s modulus of the strip and the coefficients of the looper
load torque. The speed disturbance of the actuator is caused by an
operator intervention, a thickness control, and so on. Since the
aforementioned RHC has the parameter variation and the
disturbance of the actuator, the robustness of the system should be
carefully considered. Therefore an adaptive control scheme is
constructed to control the tension for the parameter variation,
where the looper model is identified by a 4SID(Subspace-based
State Space System Identification) algorithm [18-22]. It is shown
that the proposed RHC control system has the advantages such as
the simpler computation algorithms with the structured
LMI(Linear Matrix Inequality), and the robust tracking
performance and the robust stability within the limit of
constrained control inputs.

The paper is organized as follows: Section 2 gives a brief
description of the looper dynamics and its state space
representation. In Section 3, the proposed controller including
ARHC controller with the finite terminal weighting matrix, the
on-line adaptation with the 4SID algorithm is constructed. In
Section 4, the simulation results for the parameter variation and
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the constraints are discussed. Conclusions are presented in Section 5.

I1. Looper-Tension Dynamics
Fig. 1 shows a looper-tension control system between two
stands in the hot strip finishing mill. The looper absorbs the mass-
flow unbalance due to the interstand strip speed difference. Model
description of this section follows closely that in references [9,11].
By the Newton’s second law and Hooke’s law, the looper-tension
dynamics is described by the following equations:

J0=F0)~ 40F6)~ DO+ T,,, o
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where the parameters of the looper are represented as

KO =T, +T,+T,
=(M,g)L, cos(0) &)

+ {%(MS g)+ 16Eb(%) H(Q)}L, cos(8),

F(6)=L16)-L

= JH*(0) + (L, + L,cos(0))’ @

+ JH*(0)+ (L, - L cos(0)) - L,
Fy(6) = L, {sin(6 + B) —sin(6 - @)}, 5)
I, = ¢i,, 6)

where T}, is a looper motor torque, L(8) strip length generated by
the looper angle, T, looper weight torque, T, strip weight torque,
T, strip bending torque, 4, = bh, M, = pA(F(6)+L), respectively.
Besides, the details of the parameters are referred to the
nomenclature.

Note that F»(0), F5(0) in Egs. (4) and (5) are a geometric strip
elongation including the extension due to main roll speed
difference and an influence factor relative to the strip tension load,
respectively. When the looper angle(B) increases, F5(8) and F3(6)
increase monotonically as shown in Fig. 2. However, F3(0)
decreases as 8>50[degree]. Nonlinear dynamics given as in Egs.
(1) and (2) is linearized by the approximation technique using
Taylor’s series expansion. As a result, the state space
representation of a linearized model is given as follows:
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Fig. 1. Configuration of looper system.
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Fig. 2. Relation between looper angle and F(8), F5(6).
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where xeR" is a state and ueR™, yeR™ are a control input and a
measured output(n=>5, m=2), respectively. They are defined as x =
(605086 vy, i1’y u=[vr’ G|,y =60 56). I Eq. (7),
we proposed the 5t order matrices of the looper system as
follows, respectively. The effectiveness of the 5t4 order looper
system is verified in [11,13].
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IT1. ARHC based Tension Control System
The control system proposed in this paper has a structure of an
adaptive RHC(ARHC) system based on an on-line subspace
identifier to enhance the robustness with respect to parameter
variations. To design the RHC controller which satisfies some
constraints subject to control input/state variables, the continuous-
time model in Eq. (7) is represented as the following time-

invariant discrete system with input and state constraints:

Xy = X, + By, ©
subject to

{_ulimsuksulim’ k:()a L. N-1 (10)
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where 1;,,eR™ , GeR™™ and geR™ . It is assumed that u, = 0
and Gx; = 0 satisfy the constraint (10).
The performance criterion can be written as follows:

N-l1
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where N is a horizon size, 0> 0, R > 0 and W¥>0 are the state
weighting matrix, the input weighting matrix and the terminal
weighting matrix, respectively, and set to 0 = ¥ = " R =
I"™(Lidentity matrix).

We introduce so-called invariant ellipsoid property which can
be interpreted in terms of quadratic stability. Let us suppose that

there exists a KeR™" and a positive definite matrix Pe R™ such
that

(4+ BK) P(A4+BK)-P<0. (12)

Then the optimization problem minimizing J(x;, k) subject to the
constraint (10) is always feasible for all &> 0 and for all initial
states xy gy where

gy ={E e R ETWE <), (13)

Also, x; = 0 is the exponential stable equilibrium of the closed
loop system with the receding horizon controller stemming from
this optimization problem, for all initial states x;cgy.

In order to utilize the RHC, the state and input of the system
equation (9) need to be augmented. First, we define the
augmented variables X, U; and X}, as

Xk Xy
X Upi 0
| Keeruw .
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Then the following equation holds and the performance index (11)
is written by as follows:

X, =AX, +BU, + X, (15)
J(x,, k)= X[ OX, +U'RU,, (16)

where Q and R arethe augmented weighting matrix, A and

B are the augmented matrix of the 4, B and Q includes ¥ in
the last diagonal component.

The optimization problem (16) can be expressed as the
following quadratic constrained quadratic program(QCQOP):

min J(x,,k), (17)
Uy
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_ﬁlim < Uk < ﬁlim
_élim SGUk +g0 Sglim (18)
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Fig. 3. Controlier structure of ARHC.

Finally the control input(z) is represented as follows:

=[1,0,---,0]U;, k=0,1,---,N—-1

u,=| 1U; (19)
u, =Hx,, k=N,N+1,--

where H is a feedback control gain. Note that RHC scheme,
namely, finite receding horizon optimal control with a finite
terminal weighting matrix, guarantees the stability of the closed
loop control system, and the cost horizon size can be selected
more freely than that of the infinity horizon.

Now, we identify system matrices(4,, By) in Eq. (9) using an
on-line subspace identification algorithm, so called 4SID
(Subspace-based State Space System Identification), in order to
enhance the robustness of the RHC. The 4SID is effective in
identifying a discrete-time state space model of MIMO systems.
The details of the algorithm can be found in [18-22].

Fig. 3 shows the structure of ARHC. The input, output variables
of the system are selected from the dynamics analysis. The input
variables of the block ‘RHC controller’ are six including the 5

states(xy = [60 60 56 Svge Gipn |’ ) and the system matrices(4y
By) calculated by the 4SID. The output variables are two control
inputs(u, = [6vg'? Gi?]” ). The inputs of the block ‘on-line
adaptation’ are two control inputs and two outputs([Sve,? &y
8o 86]" Y and the output is the system matrices.

IV. Simulation Results and Discussions

The system parameters of Pohang no.2 hot strip mill in POSCO
were used for the simulation. The simulation results show the
variation of the strip tension, the looper angle and the control
inputs, where the references of the unit tension and the looper
angle are 8.6[N/mm"], 20[degree], respectively.

In Egs. (1) and (2), the critical system parameters are
considered as Young’s modulus E, of which nominal value is set
to E=117,600 [N/mm"], and the parameters Fx(8), F5(0). The RHC
controller is only adopted until 4[sec](200 samples) to gather the
data, and the results between RHC and ARHC are compared
during 4~10[sec]. The sampling time of the simulation is
20[msec]. The on-line model is updated every 20
samples(0.4[sec]) after 4[sec]. The constraints of the input and
state for the RHC are expressed as follows:

A<y, SL,-03<u,,,,<03,i=0,1,-, N1
{ 1Lk+itk 2. k+ilk (20)

~6<Gxy e <6,-0.14<Gx, ., <014, i=0,1,-, N
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where N is set to 5. The coefficient matrices (4y, By, Ci, Dy) are
adaptively updated from the on-line identification.
1. Control input and disturbance attenuation

In ARHC scheme, it is one of the most important features that
the control input satisfying some constraints subject to input and
state variables is obtained. Under the existence of a speed
disturbance, Fig. 4 represents the control inputs in case of
RHCC(Receding Horizon Control with Constraints) and
RHCU(Receding Horizon Control for Unconstrained systems).
From the figure, it is shown that RHCC satisfies the constraints
given in Eq. (20), namely upper and lower-limits of vy, are
+1{mm/sec]. It is shown in Figs. 5 and 6 that the tension variation
and the control input(vg,) of ARHC are decreased by 74[%],
82[%], respectively, rather than that of the conventional PI in case

“ T “= RHACU
A — RHCC

05
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1 2z 4 5 6 7 E 9 [
Time(sec)
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Fig. 4. Control input(vg,) of ARHC.
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Fig. 5. Strip tension of conventional PI and ARHC for speed
disturbance.
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Fig. 6. Control input(vg,) of conventional PI and ARHC.
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of the speed disturbance. It is also known that the proposed
ARHC scheme is very effective in controlling the strip tension in
the hot strip mill process.

2. Robustness for parameter variation

The proposed ARHC control system takes an adaptive control
system combined with an on-line subspace model identifier,
which aims to enhance the robustness for the variation of the
system parameters. In this paper, we consider the effect of the
parameters such as E, F»(8), F3(8) in looper-tension dynamics as
shown in Egs. (1) and (2).

Even though Young’s modulus E is a function of strip
temperature, carbon and time, it is assumed that E is a constant in
the real plant. Therefore, it is necessary to analyze the robustness
for the variation of E. Fig. 7 shows the tension variation, in case
that £ varies as pulse type within the limit of £20[%] during
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5
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Fig. 7. Strip tension for E variation.
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Fig. 8. Tension for F’ variation.
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Fig. 9. Looper angle for F, variation.
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1~3[sec], 5~7|sec]. It is known from Fig. 7 that the tension
variation of ARHC decreased by 50[%] rather than that of RHC
during 5~7[sec]. The tension variation of ARHC after 7[sec] can
be reduced by updating the model with the small sample size for
the adaptation.

F, is varied by the length of the strip by the looper angle(6) and
it generates the tension variation. Figs. 8 and 9 show the variation
of the tension and the looper angle, respectively. Since F» is the
effective coefficient representing the variation of the tension as a
result of the angle, the £20[%)] variation for F, brings about large
tension variation. Normally it is not easy to eliminate the variation
of F, because it causes by the mass-flow unbalance between two
stands. However the proposed ARHC can minimize the variation
of F, through the on-line model adaptation. From Fig. 8, the
tension variation of the ARHC decreased by 50[%)] rather than
that of RHC.

Fj variation generates the variation of the tension torque and it
is the one of the causes of the mass-flow unbalance. F; is the
parameter to represent the angle variation as previously stated.
Figs. 10 and 11 show the variation of the looper angle and the
control input(vg,), respectively. The looper angle for the F;
variation is less fluctuating than that of F,. The control input of
the ARHC is also smaller than that of RHC as shown in Fig, 11.

3. Stability analysis

The closed-loop stability of the RHC is analyzed for time-
invariant systems which guarantee the monotonicity of the
optimal cost. It is shown through the simulation that zero states
and the cost monotonicity at time £ are satisfied. Fig. 12 shows the
trajectory of two states(do; d6). The over-tension and under-angle
deviations are released by increasing the main motor speed and
the looper current, respectively. Fig. 13 shows the expected cost at
time k. Since the looper-tension system satisfies the cost
monotonicity, the asymptotical stability is guaranteed by the
reference {17].

V. Conclusions

This paper proposed a new tension control scheme for the
looper in the hot strip finishing mill. The proposed control scheme
is designed on the basis of a receding horizon control(RHC)
combined with an on-line subspace identifier(4SID). The
simulation results are summarized as follows: The RHC algorithm
was very useful in designing a controller which simultaneously
satisfied the constraints subject to control input as well as the
tracking performance of interstand strip tension. The tension
variation of the proposed ARHC with constraints was decreased
by 74[%)] compared with the conventional PI for the speed
disturbance. As a consequence, it is shown that the proposed
ARHC scheme is very effective in controlling the strip tension by
the looper.
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Appendix A. Nomenclature

strip width [mm] D
Young’s Modulus [N/mm?] 1
acceleration of gravity [mm/s’] h
looper motor current [4] J
total mass of the looper arm and looper roll [Kg] M
time constant of observer [sec] T,
speed disturbance [mm/s] Ve
speed difference of roll for inter-stand [mm/s]

Greek Letters
torque constant [Nmm/A] )
inter-stand tension[N/mm?] o

ut 3 x|

199223 F-4boj sk
AEFAD. 1943 5 gk (T8
AAh. 20073 MEER A7 HFEF
S5 tfghd SHE A, 199433
A TAF JedT4A HEATY ©
AEob= RdoZAo), AXA, Z=

Az g 2 Ao,

damping factor [N sec/mm)

forward slip ratio

thickness at delivery of finishing mill [rm)]
looper inertia [Nmm®|

strip mass [Kg]

time constant of LCR [sec]

speed difference of strip for inter-stand [rm/s]

density of the strip [Kg/mm’]
looper angle[degree]



