• 제목/요약/키워드: tensor product

검색결과 121건 처리시간 0.023초

Spectral subspaces for compact group actions on $C^*$-algebras

  • Jang, Sun-Young
    • 대한수학회보
    • /
    • 제34권4호
    • /
    • pp.525-533
    • /
    • 1997
  • We analysis spectral subspaces of $C^*$-algebras for a compacr group action. And we prove the condition that the fixed point algebra of the product action is the tensor product of the fixed point algebras.

  • PDF

GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KAEHLER MANIFOLDS WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Gupta, Garima;Kumar, Rakesh
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.979-998
    • /
    • 2020
  • We study totally umbilical real half lightlike submanifolds of indefinite Kaehler manifolds with a quarter-symmetric metric connection. We obtain some conditions for a real half lightlike submanifold of an indefinite Kaehler manifold with a quarter-symmetric metric connection to be a product manifold. We derive the expression for induced Ricci type tensor 𝓡(0,2) and also obtain conditions for 𝓡(0,2) to be symmetric.

CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE

  • Chang, Jeong-Wook;Hwang, Seung-Su;Yun, Gab-Jin
    • 대한수학회보
    • /
    • 제49권3호
    • /
    • pp.655-667
    • /
    • 2012
  • In this paper, we deal with a critical point metric of the total scalar curvature on a compact manifold $M$. We prove that if the critical point metric has parallel Ricci tensor, then the manifold is isometric to a standard sphere. Moreover, we show that if an $n$-dimensional Riemannian manifold is a warped product, or has harmonic curvature with non-parallel Ricci tensor, then it cannot be a critical point metric.

RIGIDITY CHARACTERIZATION OF COMPACT RICCI SOLITONS

  • Li, Fengjiang;Zhou, Jian
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1475-1488
    • /
    • 2019
  • In this paper, we firstly define the Ricci mean value along the gradient vector field of the Ricci potential function and show that it is non-negative on a compact Ricci soliton. Furthermore a Ricci soliton is Einstein if and only if its Ricci mean value is vanishing. Finally, we obtain a compact Ricci soliton $(M^n,g)(n{\geq}3)$ is Einstein if its Weyl curvature tensor and the Kulkarni-Nomizu product of Ricci curvature are orthogonal.

NONCONSTANT WARPING FUNCTIONS ON EINSTEIN LORENTZIAN WARPED PRODUCT MANIFOLDS

  • Jung, Yoon-Tae;Choi, Eun-Hee;Lee, Soo-Young
    • 호남수학학술지
    • /
    • 제40권3호
    • /
    • pp.447-456
    • /
    • 2018
  • In this paper, we consider nonconstant warping functions on Einstein Lorentzian warped product manifolds $M=B{\times}_{f^2}F$ with an 1-dimensional base B which has a negative definite metric. As the results, we discuss that on M the resulting Einstein Lorentzian warped product metric is a future (or past) geodesically complete one outside a compact set.

HOMOGENEOUS $C^*$-ALGEBRAS OVER A SPHERE

  • Park, Chun-Gil
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.859-869
    • /
    • 1997
  • It is shown that for $A_{k, m}$ a k-homogeneous $C^*$-algebra over $S^{2n - 1} \times S^1$ such that no non-trivial matrix algebra can be factored out of $A_{k, m}$ and $A_{k, m} \otimes M_l(C)$ has a non-trivial bundle structure for any positive integer l, we construct an $A_{k, m^-} C(S^{2n - 1} \times S^1) \otimes M_k(C)$-equivalence bimodule to show that every k-homogeneous $C^*$-algebra over $S^{2n - 1} \times S^1)$. Moreover, we prove that the tensor product of the k-homogeneous $C^*$-algebra $A_{k, m}$ with a UHF-algebra of type $p^\infty$ has the tribial bundle structure if and only if the set of prime factors of k is a subset of the set of prime factors of pp.

  • PDF

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

Graph Equations Involving Tensor Product of Graphs

  • Patil, H.P.;Raja, V.
    • Kyungpook Mathematical Journal
    • /
    • 제57권2호
    • /
    • pp.301-307
    • /
    • 2017
  • In this paper, we solve the following four graph equations $L^k(G)=H{\oplus}J$; $M(G)=H{\oplus}J$; ${\bar{L^k(G)}}=H{\oplus}J$ and ${\bar{M(G)}}=H{\oplus}J$, where J is $nK_2$ for $n{\geq}1$. Here, the equality symbol = means the isomorphism between the corresponding graphs. In particular, we shall obtain all pairs of graphs (G, H), which satisfy the above mentioned equations, upto isomorphism.

Submesh Splines over Hierarchical T-meshes

  • Jin, Liangbing;Deng, Jiansong;Chen, Falai
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.47-53
    • /
    • 2010
  • In this paper we propose a new type of splines-biquadratic submesh splines over hierarchical T-meshes. The biquadratic submesh splines are in rational form consisting of some biquadratic B-splines defined over tensor-product submeshes of a hierarchical T-mesh, where every submesh is around a cell in the crossing-vertex relationship graph of the T-mesh. We provide an effective algorithm to locate the valid tensor-product submeshes. A local refinement algorithm is presented and the application of submesh splines in surface fitting is provided.

COMBINATORIAL SUPERSYMMETRY: SUPERGROUPS, SUPERQUASIGROUPS, AND THEIR MULTIPLICATION GROUPS

  • Bokhee Im;Jonathan D. H. Smith
    • 대한수학회지
    • /
    • 제61권1호
    • /
    • pp.109-132
    • /
    • 2024
  • The Clifford algebra of a direct sum of real quadratic spaces appears as the superalgebra tensor product of the Clifford algebras of the summands. The purpose of the current paper is to present a purely settheoretical version of the superalgebra tensor product which will be applicable equally to groups or to their non-associative analogues - quasigroups and loops. Our work is part of a project to make supersymmetry an effective tool for the study of combinatorial structures. Starting from group and quasigroup structures on four-element supersets, our superproduct unifies the construction of the eight-element quaternion and dihedral groups, further leading to a loop structure which hybridizes the two groups. All three of these loops share the same character table.