HOMOGENEOUS C^* -ALGEBRAS OVER A SPHERE

CHUN-GIL PARK

ABSTRACT. It is shown that for $A_{k,m}$ a k-homogeneous C^* -algebra over $S^{2n-1}\times S^1$ such that no non-trivial matrix algebra can be factored out of $A_{k,m}$ and $A_{k,m}\otimes M_l(\mathbb{C})$ has a non-trivial bundle structure for any positive integer l, we construct an $A_{k,m}$ $C(S^{2n-1}\times S^1)\otimes M_k(\mathbb{C})$ -equivalence bimodule to show that every k-homogeneous C^* -algebra over $S^{2n-1}\times S^1$ is strongly Morita equivalent to $C(S^{2n-1}\times S^1)$. Moreover, we prove that the tensor product of the k-homogeneous C^* -algebra $A_{k,m}$ with a UHF-algebra of type p^∞ has the trivial bundle structure if and only if the set of prime factors of k is a subset of the set of prime factors of p.

1. Introduction

In [9], the authors showed that the group $[S^{2n}, BPU(k)]$ of homotopy classes of continuous maps of S^{2n} into the classifying space BPU(k) of PU(k) classifies k-homogeneous C^* -algebras over S^{2n} , and that the set $[S^{2n-1} \times S^1, BPU(k)]$ classifies k-homogeneous C^* -algebras over $S^{2n-1} \times S^1$. k-homogeneous C^* -algebras over S^n were constructed in [5], and k-homogeneous C^* -algebras over $S^{2n-1} \times S^1$ were constructed in [7].

It is well-known that for M a finite dimensional CW-complex, the Čech cohomology group $H^3(M, \mathbb{Z})$ classifies tensor products of k-homogeneous C^* -algebras over M with the C^* -algebra $\mathcal{K}(\mathcal{H})$ of compact operators on a separable Hilbert space \mathcal{H} , and (cf. [1]) that the Čech cohomology group $H^3(M, \mathbb{Z})$ is isomorphic to the singular cohomology

Received March 13, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46L87, 46L05; Secondary 55R15.

Key words and phrases: UHF-algebra, homogeneous C -algebra, strong Morita equivalence, equivalence bimodule, tensor product, and K-theory.

Supported in part by GARC-KOSEF in 1996 and in part by a grant of the Chungnam National University in 1997.

group $H^3(M,\mathbb{Z})$ if M is triangularizable. The Čech(=singular) cohomology group $H^3(S^{2n},\mathbb{Z})\cong\{0\}$, and the Čech(=singular) cohomology group $H^3(S^{2n-1}\times S^1,\mathbb{Z})\cong\{0\}$ if $n\neq 2$. And the Čech(=singular) cohomology group $H^3(S^3\times S^1,\mathbb{Z})\cong H^3(S^3,\mathbb{Z})\cong \mathbb{Z}$, which corresponds to the set of tensor products of $\mathcal{K}(\mathcal{H})$ -homogeneous C^* -algebras over S^3 with $C(S^1)$ for \mathcal{H} a separable Hilbert space. Thus the tensor products of k-homogeneous C^* -algebras over S^{2n} (resp. $S^{2n-1}\times S^1$) with $\mathcal{K}(\mathcal{H})$ are isomorphic to $C(S^{2n})\otimes \mathcal{K}(\mathcal{H})$ (resp. $C(S^{2n-1}\times S^1)\otimes \mathcal{K}(\mathcal{H})$).

In [3], the authors proved that $A \otimes \mathcal{K}(\mathcal{H})$ is isomorphic to $B \otimes \mathcal{K}(\mathcal{H})$ if and only if there exists an A-B-equivalence bimodule defined in the first section. In this case, we say that A and B are strongly Morita equivalent. In [2], M. Brabanter constructed an $A_{\frac{m}{k}}$ - $C(\mathbb{T}^2)$ -equivalence bimodule to prove that every rational rotation algebra is strongly Morita equivalent to $C(\mathbb{T}^2)$.

We are going to construct an equivalence bimodule to show that every k-homogeneous C^* -algebra over S^{2n} (resp. $S^{2n-1} \times S^1$) is strongly Morita equivalent to $C(S^{2n})$ (resp. $C(S^{2n-1} \times S^1)$).

Thomsen computed in [10] the homotopy group of equivalence classes of maps of S^n into the classifying space of the automorphism group of an infinite dimensional UHF-algebra: let $U = \bigotimes_{i=1}^{\infty} M_{p_i}(\mathbb{C})$ be a UHF-algebra where $\{p_i \mid i \in \mathbb{N}\}$ is a sequence of prime numbers. Let P denote all the prime numbers. For each $p \in P$, we define

$$f(p)=\#\{i\in\mathbb{N}\mid p=p_i\}.$$

Then for n even

$$[S^n,\,B(\operatorname{Aut}(U))]=\Pi_{p\in P_F}\mathbb{Z}_{p^{f(p)}},$$

where $P_F = \{p \in P \mid 0 < f(p) < \infty\}$ (interpreted to mean the trivial group if $P_F = \emptyset$). For n odd, $[S^n, B(\operatorname{Aut}(U))] = \{0\}$. This result clarifies the bundle structure of k-homogeneous C^* -algebras over S^n with a UHF-algebra of type p^∞ .

By a different trick, we are going to investigate the bundle structure of k-homogeneous C^* -algebras over S^{2n} with a UHF-algebra of type p^{∞} . Furthermore, we are going to study the bundle structure of k-homogeneous C^* -algebras over $S^{2n-1}\times S^1$ with a UHF-algebra of type p^{∞} .

2. Strong Morita equivalence for k-homogeneous C^* -algebras over S^{2n} and $S^{2n-1}\times S^1$

For a separable Hilbert space \mathcal{H} , $[S^n, BPU(\mathcal{H})] = [S^{n-1}, PU(\mathcal{H})]$ and $PU(\mathcal{H})$ is a $K(\mathbb{Z},2)$ -space, so every $K(\mathcal{H})$ -homogeneous C^* -algebra over S^n has the trivial bundle structure if $n \neq 3$. And Woodward [11] proved that $[S^3, BPU(k)]$ injects to $H^2(S^3, \mathbb{Z}_k) \oplus H^4(S^3, \mathbb{Z}) \cong \{0\}$, so every k-homogeneous C^* -algebra over S^3 is isomorphic to $C(S^3) \otimes M_k(\mathbb{C})$. Thus every k-homogeneous C^* -algebra over S^n is stably isomorphic to $C(S^n)$, i.e., every k-homogeneous C^* -algebra over S^n is strongly Morita equivalent to $C(S^n)$.

DEFINITION 2.1 [8]. Let A and B be C^* -algebras. By an A-B-equivalence bimodule is meant an A-B-bimodule on which are defined an A-valued and a B-valued inner product such that

- $(1) \langle x, y \rangle_A z = x \langle y, z \rangle_B, \quad \forall x, y, z \in X,$
- (2) the representation of A on X is a continuous *-representation by operators which are defined for $\langle \cdot, \cdot \rangle_B$, and similarly for the right representation of B,
- (3) the linear span of $\langle X, X \rangle_E$, which is an ideal in B, is dense in B, and similarly for $\langle X, X \rangle_A$.

We say that two C^* -algebras A and B are strongly Morita equivalent if there exists an A-B-equivalence bimodule. It is shown in [3] that if they are separable, then they are strongly Morita equivalent if and only if $A \otimes \mathcal{K}(\mathcal{H})$ is isomorphic to $B \otimes \mathcal{K}(\mathcal{H})$.

Note that Brabanter constructed an $A_{\frac{m}{k}}$ - $C(\mathbb{T}^2)$ -equivalence bimodule using the structure of the rational rotation algebra $A_{\frac{m}{k}}$.

Since the condition over the boundaries S^1 on sections of a k-homogeneous C^* -algebra over S^2 is the same as the condition over the boundaries S^1 on sections of a suitable k-homogeneous C^* -algebra over \mathbb{T}^2 , one can modify the construction given by Brabanter to construct a $B_{\frac{m}{k}}$ - $C(S^2)$ -equivalence bimodule. But we are going to construct a $B_{\frac{m}{k}}$ - $C(S^2)$ -equivalence bimodule using a slightly different trick.

For n a positive integer (n > 1), $[S^{2n}, BPU(k)] = [S^{2n-1}, PU(k)] \cong \mathbb{Z}$, which is a cyclic group. So the group has a generator, and there is a unitary $U(z) \in PU(k)$ such that the generating k-homogeneous C^* -algebra over S^{2n} can be realized as the C^* -algebra of sections of a

locally trivial C^* -algebra over S^{2n} characterized by the inner automorphism of the unitary $U(z) \in PU(k)$ over the boundaries S^{2n-1} . Here $PU(k) = \operatorname{Aut}(M_k(\mathbb{C})) = \operatorname{Inn}(M_k(\mathbb{C}))$. If (k,m) = p(|p| > 1), then we consider the k-homogeneous C^* -algebra over S^{2n} as the tensor product of $M_p(\mathbb{C})$ with a $\frac{k}{p}$ -homogeneous C^* -algebra over S^{2n} , which is characterized by the inner automorphism of the unitary $U(z)^{\frac{m}{p}} \in PU(\frac{k}{p})$. Consider $U(z)^m$ as $U(z)^{\frac{m}{p}} \otimes I_p \in PU(k)$. Then every k-homogeneous C^* -algebra over S^{2n} can be realized as the C^* -algebra of sections of a locally trivial C^* -algebra over S^{2n} characterized by the inner automorphism of the unitary $U(z)^m \in PU(k)$ over the boundaries S^{2n-1} . See [5] for details.

Throughout this paper, we will denote the n-dimensional northern hemisphere (resp. the n-dimensional southern hemisphere) by e_+^n (resp. e_-^n).

PROPOSITION 2.2 [5]. Every k-homogeneous C^* -algebra over S^{2n} is isomorphic to one of the following C^* -algebras $B_{k,m} = C_{g_m}(e_+^{2n} \coprod e_-^{2n}, M_k(\mathbb{C})), m \in \mathbb{Z}$, given as follows: if $f \in B_{k,m}$, then the following condition is satisfied

$$f_{+}(z) = U(z)^{-m} f_{-}(z) U(z)^{m}$$

for all $z \in S^{2n-1}$, where $U(z) \in PU(k) = \text{Inn}(M_k(\mathbb{C}))$ is a suitable projective unitary.

 $[S^{2n},BPU(\mathcal{H})]\cong[S^{2n-1},PU(\mathcal{H})]\cong\{0\}$, so every k-homogeneous C^* -algebra over S^{2n} is strongly Morita equivalent to $C(S^{2n})$. However, we don't have any equivalence bimodule constructed before.

THEOREM 2.3. The k-homogeneous C^* -algebra $B_{k,m}$ over S^{2n} is strongly Morita equivalent to $C(S^{2n})$.

Proof. We are going to construct a $B_{k,m}$ - $C(S^{2n})\otimes M_k(\mathbb{C})$ -equivalence bimodule.

Let $X = \{f \in C(e_+^{2n} \coprod e_-^{2n}, M_k(\mathbb{C})) \mid f_+(z) = U(z)^{-m} f_-(z)\}$, where U(z) is given as above. The space X is a left $B_{k,m}$ -module if module multiplication is defined by matrix multiplication $F \cdot x$, where $F = (f_{ij})_{i,j=1}^k \in B_{k,m}$ and $x \in X$. If $f \in C(S^{2n}) \otimes M_k(\mathbb{C})$ and $x \in X$, then $x \cdot f$ defines a right $C(S^{2n}) \otimes M_k(\mathbb{C})$ -module structure on X. We

define $B_{k,m}$ and $C(S^{2n}) \otimes M_k(\mathbb{C})$ -valued inner products $\langle \cdot, \cdot \rangle_{B_{k,m}}$ and $\langle \cdot, \cdot \rangle_{C(S^{2n}) \otimes M_k(\mathbb{C})}$ on X by

$$\langle x,y\rangle_{B_{k,m}}=x\cdot y^*$$
 & $\langle x,y\rangle_{C(S^{2n})\otimes M_k(\mathbb{C})}=x^*\cdot y$

if $x,y \in X$ and we have matrix multiplication on the right. Equipped with this structure, X becomes a $B_{k,m}$ - $C(S^{2n}) \otimes M_k(\mathbb{C})$ -equivalence bimodule. So $B_{k,m}$ is strongly Morita equivalent to $C(S^{2n}) \otimes M_k(\mathbb{C})$, which is strongly Morita equivalent to $C(S^{2n})$.

Therefore, $B_{k,m}$ is strongly Morita equivalent to $C(S^{2n})$.

We have obtained that every k-homogeneous C^* -algebra over S^{2n} is strongly Morita equivalent to $C(S^{2n})$.

In [7], the author showed that every k-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ is isomorphic to one of the following C^* -algebras; k-homogeneous C^* -algebras whose restrictions to $S^{2n-1} \hookrightarrow S^{2n-1} \times S^1$ are k'-homogeneous C^* -algebras over S^{2n-1} (k'|k), and which correspond to k-homogeneous C^* -algebras over S^{2n} with respect to the boundaries S^{2n-1} of $S^{2n-1} \times [0,1]$ and e^{2n}_+ If e^{2n}_- See [7] for details. It is well-known (cf. [5, T]) that for a k'-homogeneous C^* -algebra A over S^{2n-1} , there is a matrix algebra $M_l(\mathbb{C})$ such that $A \otimes M_l(\mathbb{C})$ has the trivial bundle structure. So for a k-homogeneous C^* -algebra A over $S^{2n-1} \times S^1$, there are a k-homogeneous C^* -algebra $A_{k,m}$ over $S^{2n-1} \times S^1$ and a matrix algebra $M_l(\mathbb{C})$ such that $A \otimes M_l(\mathbb{C})$ is isomorphic to $A_{k,m} \otimes M_l(\mathbb{C})$, where $A_{k,m}$ is a k-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ whose restriction to S^{2n-1} has the trivial bundle structure.

From now on we will only consider the k-homogeneous C^* -algebras over $S^{2n-1} \times S^1$ whose restrictions to S^{2n-1} have the trivial bundle structures.

PROPOSITION 2.4 [7]. Every k-homogeneous C^* -algebra over $S^{2n-1} \times S^1$, whose restriction to S^{2n-1} has a trivial bundle structure, is isomorphic to one of the following C^* -algebras $A_{k,m} = C_{g_m}(S^{2n-1} \times [0,1], M_k(\mathbb{C})), m \in \mathbb{Z}$, given as follows: if $f \in A_{k,m}$, then the following condition is satisfied

$$f(z,1) = U(z)^{-m} f(z,0) U(z)^{n}$$

for all $z \in S^{2n-1}$, where $U(z) \in PU(k)$ is given in the statement of Proposition 2.2.

Since the condition over the boundaries S^{2n-1} of $S^{2n-1} \times [0,1]$ on sections of a k-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ is the same as the condition over the boundaries S^{2n-1} of e^{2n}_+ and e^{2n}_- on sections of a suitable k-homogeneous C^* -algebra over S^{2n}_+ , one can modify the construction given in the proof of Theorem 2.3 to construct an $A_{k,m}$ - $C(S^{2n-1} \times S^1) \otimes M_k(\mathbb{C})$ -equivalence bimodule, and one can show that the unitaries $U(z)^m$ represent the $B_{k,m}$.

THEOREM 2.5. The k-homogeneous C^* -algebra $A_{k,m}$ over $S^{2n-1} \times S^1$ is strongly Morita equivalent to $C(S^{2n-1} \times S^1)$.

We have obtained that every k-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ is strongly Morita equivalent to $C(S^{2n-1} \times S^1)$.

3. The K-theory of k-homogeneous C^* -algebras over a sphere

Since every k-homogeneous C^* -algebra over S^{2n} is strongly Morita equivalent to $C(S^{2n})$, the K-theory of a k-homogeneous C^* -algebra $B_{k,m}$ over S^{2n} is isomorphic to the K-theory of $C(S^{2n})$. Thus $K_0(B_{k,m}) \cong \mathbb{Z}^2$ and $K_1(B_{k,m}) \cong \{0\}$ since $K_0(C(S^{2n})) \cong \mathbb{Z}^2$ and $K_1(C(S^{2n})) \cong \{0\}$.

LEMMA 3.1. Let $B_{k,m}$ be a k-homogeneous C^* -algebra over S^{2n} of which no non-trivial matrix algebra can be factored out. $K_0(B_{k,m}) \cong K_0(C(S^{2n})) \cong \mathbb{Z}^2$ and $K_1(B_{k,m}) \cong K_1(C(S^{2n})) \cong \{0\}$. The class $[1_{B_{k,m}}]$ of the unit $1_{B_{k,m}}$ is a primitive element of $K_0(B_{k,m})$.

Proof. We know that $B_{k,m}$ is strongly Morita equivalent to $C(S^{2n})$. So $K_0(B_{k,m}) \cong K_0(C(S^{2n})) \cong \mathbb{Z}^2$ and $K_1(B_{k,m}) \cong K_1(C(S^{2n})) \cong \{0\}$.

It is enough to show that the class $[1_{B_{k,m}}] \in K_0(B_{k,m})$ is primitive. The $C(S^{2n})$ can be embedded into the $B_{k,m}$, and the embedding of the $C(S^{2n})$ into the $B_{k,m}$ induces an isomorphism of $K_0(C(S^{2n}))$ to $K_0(B_{k,m})$. By the isomorphism $[1_{C(S^{2n})}]$ maps to $[1_{B_{k,m}}]$ or $[1_{C(S^{2n})}]$. If $[1_{C(S^{2n})}]$ maps to $[1_{A_{k,m}}]$, then $[1_{B_{k,m}}]$ is primitive, since $[1_{C(S^{2n})}] \in K_0(C(S^{2n}))$ is primitive (see [6]). If $[1_{C(S^{2n})}]$ maps to $[1_{C(S^{2n})}]$, then $[1_{B_{k,m}}] = k[1_{C(S^{2n})}]$, and so there is a suitable matrix algebra $M_p(\mathbb{C})$

such that $1_{B_{k,m}} \otimes J_p = 1_{C(S^{2n})} \otimes I_k \otimes J_p$ in the $B_{k,m} \otimes M_p(\mathbb{C})$, since $k[1_{C(S^{2n})}]$ can be represented by the projection $1_{C(S^{2n})} \otimes I_k \in C(S^{2n}) \otimes M_k(\mathbb{C})$, where I_k denotes the $k \times k$ identity matrix and J_p denotes the $p \times p$ matrix with components 0 except for the (1,1)-component 1. Then

$$(1_{B_{k,m}} \otimes J_p)|_{S^{2n-1}} = (1_{C(S^{2n})} \otimes I_k \otimes J_p)|_{S^{2n-1}}.$$

But $(1_{B_{k,m}} \otimes J_p)|_{S^{2n-1}} = 1_{C(S^{2n-1})} \otimes J_p$, and $(1_{C(S^{2n})} \otimes I_k \otimes J_p)|_{S^{2n-1}} = 1_{C(S^{2n-1})} \otimes I_k \otimes J_p$. However, Thomsen [10] computed

$$\pi_{2n-1}(\operatorname{Aut}(M_{kp}(\mathbb{C})\otimes M_{q^{\infty}}))\cong \mathbb{Z}/(kp\mathbb{Z}),$$

when kp and q are relatively prime. This means that $B_{k,m} \otimes M_p(\mathbb{C})$ is not isomorphic to $C(S^{2n}) \otimes M_{kp}$, since if it is, then $\pi_{2n-1}(\operatorname{Aut}(M_{kp}(\mathbb{C}) \otimes M_{q^{\infty}}))$ is trivial. But the $B_{k,m}$ corresponds to the $A_{k,m}$ with respect to the conditions on sections over the boundaries S^{2n-1} , and $A_{k,m}|_{S^{2n-1}} \cong C(S^{2n-1})$, since if $A_{k,m}|_{S^{2n-1}} \cong C(S^{2n-1}) \otimes M_k(\mathbb{C})$, then $A_{k,m}$ is isomorphic to $C(S^{2n-1}) \otimes C(S^1) \otimes M_k(\mathbb{C})$, which is a contradiction. So $B_{k,m}|_{S^{2n-1}} \cong C(S^{2n-1})$. Thus

$$(1_{B_{k,m}} \otimes J_p)|_{S^{2n-1}} \neq (1_{C(S^{2n})} \otimes I_k \otimes J_p)|_{S^{2n-1}}.$$

Hence $1_{B_{k,m}} \in K_0(B_{k,m})$ is primitive.

Therefore, $K_0(B_{k,m}) \cong \mathbb{Z}^2$, $K_1(B_{k,m}) \cong \{0\}$, and the class $[1_{B_{k,m}}]$ of the unit $1_{B_{k,m}}$ is a primitive element of $K_0(B_{k,m})$.

COROLLARY 3.2. Let l be a positive integer. $B_{k,m} \otimes M_l(\mathbb{C})$ is not isomorphic to $C(S^{2n}) \otimes M_{kl}(\mathbb{C})$.

Proof. Assume $B_{k,m} \otimes M_l(\mathbb{C})$ is isomorphic to $C(S^{2n}) \otimes M_{kl}(\mathbb{C})$. Then the unit $1_{B_{k,m}} \otimes I_l$ maps to the unit $1_{C(S^{2n})} \otimes I_{kl}$. So

$$[1_{B_{k,m}} \otimes I_l] = [1_{C(S^{2n})} \otimes I_{kl}].$$

Thus there is a projection $p \in B_{k,m}$ such that $l[1_{B_{k,m}}] = (kl)[p]$. But $K_0(B_{k,m}) \cong \mathbb{Z}^2$ is torsion-free, so $[1_{B_{k,m}}] = k[p]$. This is a contradiction.

Therefore, $B_{k,m} \otimes M_l(\mathbb{C})$ is not isomorphic to $C(S^{2n}) \otimes M_{kl}(\mathbb{C})$. \square

Let $A_{k,m}$ be a k-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ of which no non-trivial matrix algebra can be factored out, i.e., k and m are relatively prime. The k-homogeneous C^* -algebras $A_{k,m}$ over $S^{2n-1} \times S^1$ are strongly Morita equivalent to $C(S^{2n-1} \times S^1)$, so $K_0(A_{k,m}) \cong K_0(C(S^{2n-1} \times S^1)) \cong \mathbb{Z}^2$ and $K_1(A_{k,m}) \cong K_1(C(S^{2n-1} \times S^1)) \cong \mathbb{Z}^2$. We are going to show that the class $[1_{A_{k,m}}] \in K_0(A_{k,m})$ is primitive.

LEMMA 3.3. Let $A_{k,m}$ be a k-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ given in the statement of Proposition 2.4 whose restriction to S^{2n-1} is isomorphic to $C(S^{2n-1})$. Then $K_0(A_{k,m}) \cong K_1(A_{k,m}) \cong \mathbb{Z}^2$. And the class $[1_{A_{k,m}}] \in K_0(A_{k,m})$ is primitive.

Proof. We know that $A_{k,m}$ is strongly Morita equivalent to $C(S^{2n-1} \times S^1)$. So $K_0(A_{k,m}) \cong K_0(C(S^{2n-1} \times S^1)) \cong \mathbb{Z}^2$ and $K_1(A_{k,m}) \cong K_1(C(S^{2n-1} \times S^1)) \cong \mathbb{Z}^2$.

So it is enough to show that the class $[1_{A_{k,m}}] \in K_0(A_{k,m})$ is primitive. The $C(S^{2n-1} \times S^1)$ can be embedded into the $A_{k,m}$, and the embedding of the $C(S^{2n-1} \times S^1)$ into the $A_{k,m}$ induces an isomorphism of $K_0(C(S^{2n-1} \times S^1))$ to $K_0(A_{k,m})$. By the isomorphism $[1_{C(S^{2n-1} \times S^1)}]$ maps to $[1_{A_{k,m}}]$ or $[1_{C(S^{2n-1} \times S^1)}]$. If $[1_{C(S^{2n-1} \times S^1)}]$ maps to $[1_{A_{k,m}}]$, then $[1_{A_{k,m}}]$ is primitive, since $[1_{C(S^{2n-1} \times S^1)}] \in K_0(C(S^{2n-1} \times S^1))$ is primitive (see [6]). If $[1_{C(S^{2n-1} \times S^1)}]$ maps to $[1_{C(S^{2n-1} \times S^1)}]$, then $[1_{A_{k,m}}] = k[1_{C(S^{2n-1})}]$, and so there is a suitable matrix algebra $M_p(\mathbb{C})$ such that $1_{A_{k,m}} \otimes J_p = 1_{C(S^{2n-1} \times S^1)} \otimes I_k \otimes J_p$ in the $A_{k,m} \otimes M_p(\mathbb{C})$, since $k[1_{C(S^{2n-1} \times S^1)}]$ can be represented by the projection $1_{C(S^{2n-1} \times S^1)} \otimes I_k \in C(S^{2n-1} \times S^1)$ on $M_k(\mathbb{C})$. Then

$$(1_{A_{k,m}} \otimes J_p)|_{S^{2n-1}} = (1_{C(S^{2n-1} \times S^1)} \otimes I_k \otimes J_p)|_{S^{2n-1}}.$$

But $(1_{A_{k,m}} \otimes J_p)|_{S^{2n-1}} = 1_{C(S^{2n-1})} \otimes J_p$, and $(1_{C(S^{2n-1} \times S^1)} \otimes I_k \otimes J_p)|_{S^{2n-1}} = 1_{C(S^{2n-1})} \otimes I_k \otimes J_p$. However, $A_{k,m} \otimes M_p(\mathbb{C})$ has a nontrivial bundle structure for $M_p(\mathbb{C})$ any matrix algebra, since if it has not, then the same is true for the k'-homogeneous C^* -algebra $B_{k,m}$ over S^{2n} corresponding to the $A_{k,m}$ with respect to the conditions on sections. Thomsen result says that $B_{k,m} \otimes M_p(\mathbb{C})$ is not isomorphic to $C(S^{2n}) \otimes M_{kp}$. Thus

$$(1_{A_{k,m}} \otimes J_p)|_{S^{2n-1}} \neq (1_{C(S^{2n-1} \times S^1)} \otimes I_k \otimes J_p)|_{S^{2n-1}}.$$

Hence $1_{A_{k,m}} \in K_0(A_{k,m})$ is primitive.

Therefore, $K_0(A_{k,m}) \cong \mathbb{Z}^2$, $K_1(A_{k,m}) \cong \mathbb{Z}^2$, and the class $[1_{A_{k,m}}]$ of the unit $1_{A_{k,m}}$ is a primitive element of $K_0(A_{k,m})$.

COROLLARY 3.4. Let l be a positive integer. $A_{k,m} \otimes M_l(\mathbb{C})$ is not isomorphic to $C(S^{2n-1} \times S^1) \otimes M_{kl}(\mathbb{C})$.

The proof is similar to the proof of Corollary 3.2.

We have obtained that the class $[1_{A_{k,m}}] \in K_0(A_{k,m})$ and the class $[1_{B_{k,m}}] \in K_0(B_{k,m})$ are primitive.

4. The tensor product of a k-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ and S^{2n} with a UHF-algebra

In this section, we investigate the bundle structure of the tensor product of a k-homogeneous C^* -algebra $B_{k,m}$ over S^{2n} with a UHF-algebra $M_{p^{\infty}}$ of type p^{∞} and the bundle structure of the tensor product of a k-homogeneous C^* -algebra $A_{k,m}$ over $S^{2n-1} \times S^1$ with $M_{p^{\infty}}$.

The following is useful.

THEOREM 4.1 [4]. Suppose there exists an intertwining of the sequence of C^* -algebra homomorphisms $A_1 \to A_2 \to \cdots$ and $B_1 \to B_2 \to \cdots$. Then the inductive limit C^* -algebras $\lim A_i$ and $\lim B_i$ are isomorphic.

Let $B_{k,m}$ be a k-homogeneous C^* -algebra over S^{2n} of which no non-trivial matrix algebra can be factored out, i.e., k and m are relatively prime.

THEOREM 4.2. Let $B_{k,m}$ be a k-homogeneous C^* -algebra over S^{2n} with (k,m)=1. Let $M_{p^{\infty}}$ be a UHF-algebra of type p^{∞} . Then $B_{k,m}\otimes M_{p^{\infty}}$ is isomorphic to $C(S^{2n})\otimes M_k(\mathbb{C})\otimes M_{p^{\infty}}$ if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Proof. Assume the set of prime factors of k is a subset of the set of prime factors of p. To show that $B_{k,m} \otimes M_{p^{\mathbb{C}^{\circ}}}$ is isomorphic to $C(S^{2n}) \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$, it is enough to show that $B_{k,m} \otimes M_{k^{\infty}}$ is isomorphic to $C(S^{2n}) \otimes M_{k^{\infty}}$. But there exist the canonical C^* -algebra homomorphisms:

$$B_{k,m} \hookrightarrow C(S^{2n}) \otimes M_k(\mathbb{C}) \hookrightarrow B_{k,m} \otimes M_k(\mathbb{C}) \hookrightarrow C(S^{2n}) \otimes M_{k^2}(\mathbb{C}) \hookrightarrow \cdots$$

The inductive limit of the odd terms

$$\cdots \to B_{k,m} \otimes M_{k^d}(\mathbb{C}) \to B_{k,m} \otimes M_{k^{d+1}}(\mathbb{C}) \to \cdots$$

is $B_{k,m} \otimes M_{k^{\infty}}$, and the inductive limit of the even terms

$$\cdots \to C(S^{2n}) \otimes M_{k^d}(\mathbb{C}) \to C(S^{2n}) \otimes M_{k^{d+1}}(\mathbb{C}) \to \cdots$$

is $C(S^{2n}) \otimes M_{k^{\infty}}$. Thus by Theorem 4.1, $B_{k,m} \otimes M_{k^{\infty}}$ is isomorphic to $C(S^{2n}) \otimes M_{k^{\infty}}$.

Conversely, assume $B_{k,m} \otimes M_{p^{\infty}}$ is isomorphic to $C(S^{2n}) \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$. Then the unit $1_{B_{k,m}} \otimes 1_{M_{p^{\infty}}}$ maps to the unit $1_{C(S^{2n})} \otimes 1_{M_{p^{\infty}}} \otimes I_k$. So

$$[1_{B_{k,m}}\otimes 1_{M_p\infty}]=[1_{C(S^{2n})}\otimes 1_{M_p\infty}\otimes I_k].$$

And $[1_{B_{k,m}}\otimes 1_{M_{p^{\infty}}}]=[1_{B_{k,m}}]\otimes [1_{M_{p^{\infty}}}]$ and $[1_{C(S^{2n})}\otimes 1_{M_{p^{\infty}}}\otimes I_k]=k([1_{C(S^{2n})}]\otimes [1_{M_{p^{\infty}}}])$. But $K_0(B_{k,m}\otimes M_{p^{\infty}})\cong [\frac{1}{p}](K_0(B_{k,m}))$ and $K_0(C(S^{2n})\otimes M_{p^{\infty}}\otimes M_k(\mathbb{C})\cong k[\frac{1}{p}](K_0(C(S^{2n})))$. If there is a prime factor q of k such that $q\nmid p$, then $[1_{M_{p^{\infty}}}]\neq q[p_{\infty}]$ for p_{∞} a projection in $M_{p^{\infty}}$ under the assumption that the unit $1_{B_{k,m}}\otimes 1_{M_{p^{\infty}}}$ maps to the unit $1_{C(S^{2n})}\otimes 1_{M_{p^{\infty}}}\otimes I_k$. So there is a projection $p_1\in B_{k,m}$ such that $[1_{B_{k,m}}]=q[p_1]$. This contradicts Theorem 3.3. Thus the set of prime factors of k is a subset of the set of prime factors of p.

Therefore, $B_{k,m} \otimes M_{p^{\infty}}$ is isomorphic to $C(S^{2n}) \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Next, let $A_{k,m}$ be a k-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ whose restriction to S^{2n-1} is isomorphic to $C(S^{2n-1})$, i.e., k and m are relatively prime.

THEOREM 4.3. Let $A_{k,m}$ be a k-homogeneous C^* -algebra over $S^{2n-1} \times S^1$ with (k,m)=1. Let $M_{p^{\infty}}$ be a UHF-algebra of type p^{∞} . Then $A_{k,m} \otimes M_{p^{\infty}}$ is isomorphic to $C(S^{2n-1} \times S^1) \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of k is a subset of the prime factors of p.

The proof is similar to the proof of Theorem 4.2.

We have obtained that $A_{k,m} \otimes M_{p^{\infty}}$ has the trivial bundle structure if and only if the set of prime factors of k is a subset of the set of prime factors of p, and that $B_{k,m} \otimes M_{p^{\infty}}$ has a trivial bundle structure if and only if the set of prime factors of k is a subset of the set of prime factors of p.

References

- [1] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York, Heidelberg and Berlin, 1982.
- [2] M. Brabanter, The classification of rational rotation C*-algebras, Arch. Math. 43 (1984), 79-83.
- [3] L. Brown, P. Green and M. Rieffel, Stable isomorphism and strong Morita equivalence of C*-algebras, Pacific J. of Math. 71 (1977), 349-363.
- [4] G. A. Elliott, On the classification of C*-algebras of real rank zero, J. reine angew. Math 443 (1993), 179-219.
- [5] F. Krauss and T. C. Lawson, Examples of homogeneous C*-algebras, Memoirs of A.M.S. 148 (1974), 153-164.
- [6] M. Karoubi, K-Theory, Springer-Verlag, Berlin, Heidelberg and New York, 1978.
- [7] C. Park, Homogeneous C*-algebras over a product space of spheres, preprint.
- [8] M. Rieffel, Morita equivalence for operator algebras, Operator Algebras and Applications (R. V. Kadison, ed.), Proc. Symp. Pure Math., vol. 38, Amer. Math. Soc., Providence, R. I., 1982, pp. 285–298.
- [9] M. Takesaki and J. Tomiyama, Applications of fibre bundles to the certain class of C*-algebras, Tohoku Math. J. 13 (1961), 498-522.
- [10] K. Thomsen, The homotopy type of the group of automorphisms of a UHFalgebra, J. Funct. Anal. 72 (1987), 182-207.
- [11] L. M. Woodward, The classification of principal PU(k)-bundles over a 4complex, J. London Math. Soc. (2) 25 (1982), 513-524.

Department of Mathematics Chungnam National University Taejon 305-764, Korea

E-mail: cgpark@math.chungnam.ac.kr