DOI QR코드

DOI QR Code

COMBINATORIAL SUPERSYMMETRY: SUPERGROUPS, SUPERQUASIGROUPS, AND THEIR MULTIPLICATION GROUPS

  • Bokhee Im (Department of Mathematics Chonnam National University) ;
  • Jonathan D. H. Smith (Department of Mathematics Iowa State University)
  • Received : 2023.04.01
  • Accepted : 2023.10.25
  • Published : 2024.01.01

Abstract

The Clifford algebra of a direct sum of real quadratic spaces appears as the superalgebra tensor product of the Clifford algebras of the summands. The purpose of the current paper is to present a purely settheoretical version of the superalgebra tensor product which will be applicable equally to groups or to their non-associative analogues - quasigroups and loops. Our work is part of a project to make supersymmetry an effective tool for the study of combinatorial structures. Starting from group and quasigroup structures on four-element supersets, our superproduct unifies the construction of the eight-element quaternion and dihedral groups, further leading to a loop structure which hybridizes the two groups. All three of these loops share the same character table.

Keywords

Acknowledgement

The authors are grateful to Petr Vojtechovsky for identifying the quatedral loop within GAP (compare Remark 4.20), and also to Connor Depies and an anonymous referee for other helpful comments on the paper.

References

  1. R. H. Bruck, A Survey of Binary Systems, Springer, Berlin, 1958.
  2. P. Bruillard, C. Galindo, T. Hagge, S. Ng, J. Y. Plavnik, E. C. Rowell, and Z. Wang, Fermionic modular categories and the 16-fold way, J. Math. Phys. 58 (2017), no. 4, 041704, 31 pp. https://doi.org/10.1063/1.4982048
  3. The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12, 2008. https://www.gap-system.org
  4. G. James and M. Liebeck, Representations and Characters of Groups, 2nd. ed., Cambridge University Press, Cambridge, 2004.
  5. K. W. Johnson and J. D. H. Smith, Characters of finite quasigroups, European J. Combin. 5 (1984), no. 1, 43-50. https://doi.org/10.1016/S0195-6698(84)80017-7
  6. K. W. Johnson and J. D. H. Smith, Characters of finite quasigroups V: Linear characters, European J. Combin. 10 (1989), no. 5, 449-456. https://doi.org/10.1016/S0195-6698(89)80019-8
  7. M. Karoubi, K-theory, Springer, Berlin, 1978.
  8. G. P. Nagy and P. Vojtechovsky, LOOPS, version 3.4.0, package for GAP.
  9. M. A. Nielsen and I. L. Chuang, Quantum Information and Quantum Computation, Cambridge Univ. Press, Cambridge, 2000.
  10. N. Salingaros, The relationship between finite groups and Clifford algebras, J. Math. Phys. 25 (1984), no. 4, 738-742. https://doi.org/10.1063/1.526260
  11. J. D. H. Smith, An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Boca Raton, FL, 2007.
  12. J. D. H. Smith, The quatedral loop and its multiplication group, preprint, 2023.
  13. J. D. H. Smith and A. B. Romanowska, Post-Modern Algebra, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. https://doi.org/10.1002/9781118032589
  14. V. S. Varadarajan, Supersymmetry for mathematicians: An introduction, Courant Lecture Notes in Mathematics, 11, New York University, Courant Institute of Mathematical Sciences, New York, 2004. https://doi.org/10.1090/cln/011
  15. P. Vojtechovsky, private communication.
  16. D. B. Westra, Superrings and Supergroups, Dissertation, Univ. Wien, 2009.