Acknowledgement
We are thankful to the referee for helpful suggestions.
References
- T. Barron and T. Pollock, Kahler quantization and entanglement, Rep. Math. Phys. 80 (2017), no. 2, 217-231. https://doi.org/10.1016/S0034-4877(17)30077-0
- L. Charles and B. Estienne, Entanglement entropy and Berezin-Toeplitz operators, Comm. Math. Phys. 376 (2020), no. 1, 521-554. https://doi.org/10.1007/s00220-019-03625-y
- X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, 254, Birkhauser Verlag, Basel, 2007. https://doi.org/10.1007/978-3-7643-8115-8
- D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993), no. 9, 1291-1294. https://doi.org/10.1103/PhysRevLett.71.1291
- S. Sen, Average entropy of a quantum subsystem, Phys. Rev. Lett. 77 (1996), no. 1, 1-3. https://doi.org/10.1103/PhysRevLett.77.1
- B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661-683. https://doi.org/10.1007/s002200050544
- J. Song and S. Zelditch, Test configurations, large deviations and geodesic rays on toric varieties, Adv. Math. 229 (2012), no. 4, 2338-2378. https://doi.org/10.1016/j.aim.2011.12.025
- S. Zelditch, Bernstein polynomials, Bergman kernels and toric Kahler varieties, J. Symplectic Geom. 7 (2009), no. 2, 51-76. http://projecteuclid.org/euclid.jsg/1239974380 https://doi.org/10.4310/JSG.2009.v7.n2.a3
- S. Zelditch and P. Flurin, Entropy of Bergman measures of a toric Kaehler manifold, Pure Appl. Math. Q. 18 (2022), no. 1, 269-303. https://doi.org/10.4310/PAMQ.2022.v18.n1.a8
- S. Zelditch and P. Zhou, Central limit theorem for toric Kahler manifolds, Pure Appl. Math. Q. 17 (2021), no. 3, 843-864. https://doi.org/10.4310/PAMQ.2021.v17.n3.a1