DOI QR코드

DOI QR Code

AVERAGE ENTROPY AND ASYMPTOTICS

  • Received : 2023.03.26
  • Accepted : 2023.10.19
  • Published : 2024.01.01

Abstract

We determine the N → ∞ asymptotics of the expected value of entanglement entropy for pure states in H1,N ⊗ H2,N, where H1,N and H2,N are the spaces of holomorphic sections of the N-th tensor powers of hermitian ample line bundles on compact complex manifolds.

Keywords

Acknowledgement

We are thankful to the referee for helpful suggestions.

References

  1. T. Barron and T. Pollock, Kahler quantization and entanglement, Rep. Math. Phys. 80 (2017), no. 2, 217-231. https://doi.org/10.1016/S0034-4877(17)30077-0
  2. L. Charles and B. Estienne, Entanglement entropy and Berezin-Toeplitz operators, Comm. Math. Phys. 376 (2020), no. 1, 521-554. https://doi.org/10.1007/s00220-019-03625-y
  3. X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, 254, Birkhauser Verlag, Basel, 2007. https://doi.org/10.1007/978-3-7643-8115-8
  4. D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993), no. 9, 1291-1294. https://doi.org/10.1103/PhysRevLett.71.1291
  5. S. Sen, Average entropy of a quantum subsystem, Phys. Rev. Lett. 77 (1996), no. 1, 1-3. https://doi.org/10.1103/PhysRevLett.77.1
  6. B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661-683. https://doi.org/10.1007/s002200050544
  7. J. Song and S. Zelditch, Test configurations, large deviations and geodesic rays on toric varieties, Adv. Math. 229 (2012), no. 4, 2338-2378. https://doi.org/10.1016/j.aim.2011.12.025
  8. S. Zelditch, Bernstein polynomials, Bergman kernels and toric Kahler varieties, J. Symplectic Geom. 7 (2009), no. 2, 51-76. http://projecteuclid.org/euclid.jsg/1239974380 https://doi.org/10.4310/JSG.2009.v7.n2.a3
  9. S. Zelditch and P. Flurin, Entropy of Bergman measures of a toric Kaehler manifold, Pure Appl. Math. Q. 18 (2022), no. 1, 269-303. https://doi.org/10.4310/PAMQ.2022.v18.n1.a8
  10. S. Zelditch and P. Zhou, Central limit theorem for toric Kahler manifolds, Pure Appl. Math. Q. 17 (2021), no. 3, 843-864. https://doi.org/10.4310/PAMQ.2021.v17.n3.a1