• 제목/요약/키워드: tensor decomposition

검색결과 42건 처리시간 0.024초

Vector decomposition of the evolution equations of the conformation tensor of Maxwellian fluids

  • Cho, Kwang-Soo
    • Korea-Australia Rheology Journal
    • /
    • 제21권2호
    • /
    • pp.143-146
    • /
    • 2009
  • Breakthrough of high Weisenberg number problem is related with keeping the positive definiteness of the conformation tensor in numerical procedures. In this paper, we suggest a simple method to preserve the positive definiteness by use of vector decomposition of the conformation tensor which does not require eigenvalue problem. We also derive the constitutive equation of tensor-logarithmic transform in simpler way than that of Fattal and Kupferman and discuss the comparison between the vector decomposition and tensor-logarithmic transformation.

DECOMPOSITION OF SPECIAL PSEUDO PROJECTIVE CURVATURE TENSOR FIELD

  • MOHIT SAXENA;PRAVEEN KUMAR MATHUR
    • Journal of applied mathematics & informatics
    • /
    • 제41권5호
    • /
    • pp.989-999
    • /
    • 2023
  • The aim of this paper is to study the projective curvature tensor field of the Curvature tensor Rijkh on a recurrent non Riemannian space admitting recurrent affine motion, which is also decomposable in the form Rijkh=Xi Yjkh, where Xi and Yjkh are non-null vector and tensor respectively. In this paper we decompose Special Pseudo Projective Curvature Tensor Field. In the sequal of decomposition we established several properties of such decomposed tensor fields. We have considered the curvature tensor field Rijkh in a Finsler space equipped with non symmetric connection and we study the decomposition of such field. In a special Pseudo recurrent Finsler Space, if the arbitrary tensor field 𝜓ij is assumed to be a covariant constant then, in view of the decomposition rule, 𝜙kh behaves as a recurrent tensor field. In the last, we have considered the decomposition of curvature tensor fields in Kaehlerian recurrent spaces and have obtained several related theorems.

S-PARAFAC: 아파치 스파크를 이용한 분산 텐서 분해 (S-PARAFAC: Distributed Tensor Decomposition using Apache Spark)

  • 양혜경;용환승
    • 정보과학회 논문지
    • /
    • 제45권3호
    • /
    • pp.280-287
    • /
    • 2018
  • 최근 추천시스템과 데이터 분석 분야에서 고차원 형태의 텐서를 이용하는 연구가 증가하고 있다. 이는 고차원의 데이터인 텐서 분석을 통해 더 많은 잠재 요소와 잠재 패턴을 추출가능하기 때문이다. 그러나 고차원 형태인 텐서는 크기가 방대하고 계산이 복잡하기 때문에 텐서 분해를 통해 분석해야한다. 기존 텐서 도구들인 rTensor, pyTensor와 MATLAB은 단일 시스템에서 작동하기 때문에 방대한 양의 데이터를 처리하기 어렵다. 하둡을 이용한 텐서 분해 도구들도 있지만 처리 시간이 오래 걸린다. 따라서 본 논문에서는 인 메모리 기반의 빅데이터 시스템인 아파치 스파크를 기반으로 하는 텐서 분해 도구인 S-PARAFAC을 제안한다. S-PARAFAC은 텐서 분해 방법 중 PARAFAC 분해에 초점을 맞춰 아파치 스파크에 적합하게 변형하여 텐서 분해를 빠르게 분산 처리가능 하도록 하였다. 본 논문에서는 하둡을 기반의 텐서 분해 도구와 S-PARAFAC의 성능을 비교하여 약 4~25배 정도의 좋은 성능을 보였다.

아파치 스파크에서의 PARAFAC 분해 기반 텐서 재구성을 이용한 추천 시스템 (PARAFAC Tensor Reconstruction for Recommender System based on Apache Spark)

  • 임어진;용환승
    • 한국멀티미디어학회논문지
    • /
    • 제22권4호
    • /
    • pp.443-454
    • /
    • 2019
  • In recent years, there has been active research on a recommender system that considers three or more inputs in addition to users and goods, making it a multi-dimensional array, also known as a tensor. The main issue with using tensor is that there are a lot of missing values, making it sparse. In order to solve this, the tensor can be shrunk using the tensor decomposition algorithm into a lower dimensional array called a factor matrix. Then, the tensor is reconstructed by calculating factor matrices to fill original empty cells with predicted values. This is called tensor reconstruction. In this paper, we propose a user-based Top-K recommender system by normalized PARAFAC tensor reconstruction. This method involves factorization of a tensor into factor matrices and reconstructs the tensor again. Before decomposition, the original tensor is normalized based on each dimension to reduce overfitting. Using the real world dataset, this paper shows the processing of a large amount of data and implements a recommender system based on Apache Spark. In addition, this study has confirmed that the recommender performance is improved through normalization of the tensor.

An Application of Tucker Decomposition for Detecting Epilepsy EEG signals

  • Thieu, Thao Nguyen;Yang, Hyung-Jeong
    • Journal of Multimedia Information System
    • /
    • 제2권2호
    • /
    • pp.215-222
    • /
    • 2015
  • Epileptic Seizure is a popular brain disease in the world. It affects the nervous system and the activities of brain function that make a person who has seizure signs cannot control and predict his actions. Based on the Electroencephalography (EEG) signals which are recorded from human or animal brains, the scientists use many methods to detect and recognize the abnormal activities of brain. Tucker model is investigated to solve this problem. Tucker decomposition is known as a higher-order form of Singular Value Decomposition (SVD), a well-known algorithm for decomposing a matric. It is widely used to extract good features of a tensor. After decomposing, the result of Tucker decomposition is a core tensor and some factor matrices along each mode. This core tensor contains a number of the best information of original data. In this paper, we used Tucker decomposition as a way to obtain good features. Training data is primarily applied into the core tensor and the remained matrices will be combined with the test data to build the Tucker base that is used for testing. Using core tensor makes the process simpler and obtains higher accuracies.

DECOMPOSITION FOR CARTAN'S SECOND CURVATURE TENSOR OF DIFFERENT ORDER IN FINSLER SPACES

  • Abdallah, Alaa A.;Navlekar, A.A.;Ghadle, Kirtiwant P.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권2호
    • /
    • pp.433-448
    • /
    • 2022
  • The Cartan's second curvature tensor Pijkh is a positively homogeneous of degree-1 in yi, where yi represent a directional coordinate for the line element in Finsler space. In this paper, we discuss the decomposition of Cartan's second curvature tensor Pijkh in two spaces, a generalized 𝔅P-recurrent space and generalized 𝔅P-birecurrent space. We obtain different tensors which satisfy the recurrence and birecurrence property under the decomposition. Also, we prove the decomposition for different tensors are non-vanishing. As an illustration of the applicability of the obtained results, we finish this work with some illustrative examples.

차분진화에 기초한 클러스터링 (Differential Evolution Based Clustering)

  • 함서현;이현창;신성윤
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.389-390
    • /
    • 2019
  • Tensor decomposition, proven to be an efficient data processing method, can be used to provide data-driven services. we propose a novel datadriven mutation strategy for parent individuals selection, namely tensor-based DE with parapatric and cross-generation(TPCDE).

  • PDF

텐서의 비음수 Tucker 분해 (Nonnegative Tucker Decomposition)

  • 김용덕;최승진
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권3호
    • /
    • pp.296-300
    • /
    • 2008
  • 최근에 개발된 Nonnegative tensor factorization(NTF)는 비음수 행렬 분해(NMF)의 multiway(multilinear) 확장형이다. NTF는 CANDECOMP/PARAFAC 모델에 비음수 제약을 가한 모델이다. 본 논문에서는 Tucker 모델에 비음수 제약을 가한 nonnegative Tucker decomposition(NTD)라는 새로운 텐서 분해 모델을 제안한다. 제안된 NTD 모델을 least squares, I-divergence, $\alpha$-divergence를 이용한 여러 목적함수에 대하여 fitting하는 multiplicative update rule을 유도하였다.

Blind signal separation for coprime planar arrays: An improved coupled trilinear decomposition method

  • Zhongyuan Que;Xiaofei Zhang;Benzhou Jin
    • ETRI Journal
    • /
    • 제45권1호
    • /
    • pp.138-149
    • /
    • 2023
  • In this study, the problem of blind signal separation for coprime planar arrays is investigated. For coprime planar arrays comprising two uniform rectangular subarrays, we link the signal separation to the tensor-based model called coupled canonical polyadic decomposition (CPD) and propose an improved coupled trilinear decomposition approach. The output data of coprime planar arrays are modeled as a coupled tensor set that can be further interpreted as a coupled CPD model, allowing a signal separation to be achieved using coupled trilinear alternating least squares (TALS). Furthermore, in the procedure of the coupled TALS, a Vandermonde structure enforcing approach is explicitly applied, which is shown to ensure fast convergence. The results of Monto Carlo simulations show that our proposed algorithm has the same separation accuracy as the basic coupled TALS but with a faster convergence speed.