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Abstract

In this study, the problem of blind signal separation for coprime planar arrays

is investigated. For coprime planar arrays comprising two uniform rectangular

subarrays, we link the signal separation to the tensor-based model called

coupled canonical polyadic decomposition (CPD) and propose an improved

coupled trilinear decomposition approach. The output data of coprime planar

arrays are modeled as a coupled tensor set that can be further interpreted as a

coupled CPD model, allowing a signal separation to be achieved using coupled

trilinear alternating least squares (TALS). Furthermore, in the procedure of

the coupled TALS, a Vandermonde structure enforcing approach is explicitly

applied, which is shown to ensure fast convergence. The results of Monto

Carlo simulations show that our proposed algorithm has the same separation

accuracy as the basic coupled TALS but with a faster convergence speed.

KEYWORD S
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1 | INTRODUCTION

Blind signal separation is a crucial topic in various engi-
neering fields, such as radar, sonar, wireless communica-
tion, and medical diagnosis. It can be interpreted as a
procedure of exploiting numerous sensors to simulta-
neously obtain a mixture of multiple source signals and
recover source signals from the mixture without knowing
signal propagation conditions [1]. This topic has attracted
considerable attention in the past decades, and numerous
available algorithms have been proposed. Generally,
these algorithms can be coarsely divided into two types;
one is the algorithms based on array signal processing
techniques, including beamforming [2,3], multiple signal
classification (MUSIC) [4,5], and estimating signal
parameters via rotational invariance techniques

(ESPRIT) [6]; the other is the algorithms based on the
independence of the source signals, including fast inde-
pendent component analysis (Fast-ICA) [7], second-order
blind identification (SOBI) [8], and joint approximation
diagonalization of eigenmatrices (JADE) [9]. Compared
with the latter, the former uses known array geometry
and can achieve higher accuracy of signal separation with
fewer signal samples, thus attracting more attention in
fields such as wireless communication and radar.

Most of the existing studies on signal separation for
sensor arrays primarily focus on traditional array geome-
tries, including uniform linear arrays (ULA), uniform cir-
cular arrays, and uniform planar arrays [10–12]. The
interelement spacing of these arrays needs to be no more
than half a wavelength to satisfy Nyquist’s sampling
theorem, so the array aperture is relatively limited.
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Furthermore, there may be severe mutual coupling
effects because of the close distance of the elements.
Recently, researchers have shifted their research focus
from uniform arrays to nonuniform sparse arrays to over-
come the limitations of traditional arrays, such as
coprime arrays [13,14].

The coprime array is an emerging type of nonuniform
sparse array that can achieve large array apertures at low
hardware cost, providing significant advantages over con-
ventional arrays. Although studies on coprime arrays are
just in their infancy, researchers have already proposed
numerous high-precision signal parameters estimation
algorithms. In Zhou and others [15], to estimate the direc-
tion of arrival (DOA), a spectral search-based approach for
coprime linear arrays was proposed by capitalizing on the
results of linear subarrays. A search-free 1-D DOA
algorithm was proposed in Weng and Djuri�c [16] for
coprime linear arrays using a projection-like approach. In
Wu and others [17], a coprime planar array comprising
two uniform square subarrays was used, and the conven-
tional 2-D MUSIC algorithm was used for 2-D DOA esti-
mation. In Zheng and others [18], a generalized coprime
planar array geometry was developed, and the classical
2-D DOA estimation algorithms such as 2-D MUSIC and
2-D ESPRIT can be performed accompanying ambiguity
elimination. However, there are only a few research find-
ings related to signal separation for coprime arrays. In Gu
and others [19], a coprime linear array adaptive beam-
forming algorithm was proposed by establishing a connec-
tion between the coprime array and its derived virtual
ULA and performance increment can be obtained by pro-
cessing the equivalent virtual ULA employing existing
adaptive beamforming algorithms. In Zhou and others
[20], a novel coprime array adaptive beamformer was
developed for coprime linear arrays based on the MVDR
principle. Most of the studies related to signal separation
were conducted for coprime linear arrays, while it is also
crucial for practical applications to find effective signal
separation approaches for coprime planar arrays.

Recently, the tensor decomposition approach applica-
tion has developed quickly in sensor array processing,
wireless communication, radar signal processing, and
independent component analysis [21–26]. As high-order
analogs of matrices, tensors possess the inherent multi-
linear structure and thus have unique advantages in data
modeling. Numerous problems in signal processing can
be formulated as a canonical polyadic decomposition
(CPD) or parallel factor (PARAFAC) decomposition
problem by exploiting the signal model structure and
properties. The CPD modeling solution can be admitted,
but with the limit of ignoring the inherent relation
between different arrays for multiple sensor arrays. This
limitation can be overcome by a novel tensor-based

model called coupled canonical polyadic decomposition
[27–29]. Adopting coupled alternating least squares,
coupled CPD has the same characteristics of simple com-
putation as the standard CPD but better signal separation
performance. Coupled CPD model is a good candidate for
achieving signal separation considering the coprime pla-
nar arrays feature.

Motivated by the studies mentioned above, in this
study, we propose an improved coupled trilinear decompo-
sition approach for the signal separation with a coprime
planar array. Specifically, we employ coupled CPD to
resolve the signal separation problem for coprime planar
arrays and proposed an enhanced signal separation
algorithm for coprime planar arrays based on the basic
trilinear alternating least squares (TALS). Vandermonde
structure characteristic is used in the procedure of coupled
trilinear decomposition; thus, compared with the base
coupled trilinear decomposition and subarray independent
TALS, the proposed algorithm has a better convergence
speed. The experimental results show the effectiveness of
our algorithm. In this study, we use the generalized
coprime planar array in Zheng and others [18].

The primary contributions of this study are summa-
rized as follows:

1. We formulate the signal separation problem for
coprime planar arrays as a coupled CPD problem,
which can capitalize on the feature of the subarray-
shared source matrix to enhance the separation
accuracy.

2. We propose an enhanced coupled trilinear decomposi-
tion approach, which uses the Vandermonde structure
characteristic to speed the coupled trilinear decompo-
sition and resolve scale ambiguity in the
decomposition.

3. We examine the proposed approach’s computational
complexity and verify our approach’s superiority by
simulation experiments. The findings show that our
approach is computationally efficient.

The rest of this study is outlined as follows. The nota-
tions used throughout this text are given in the rest of
this section. Next, in Section 2, the signal model of a
coprime planar array and a coupled CPD model for
source separation are introduced. Section 3 reviews the
basic coupled TALS approach and presents the proposed
algorithm subsequently. The complexity analysis and the
advantages of our algorithm are also discussed in
Section 3. In Section 4, the results of numerical experi-
ments are presented, and the conclusions are drawn in
Section 5.

Notation: Lower-case boldfaces (e.g., a), upper-case
boldfaces (e.g., A), and upper-case calligraphic boldfaces
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(e.g., A) denote vectors, matrices, and tensors, respec-
tively. C denotes the sets of complex numbers. The super-
scripts �ð Þ�, �ð ÞT, �ð ÞH, �ð Þ�1, and �ð Þ† represent conjugate,
transpose, conjugate transpose, inverse, and Moore–
Penrose pseudo-inverse of a vector or matrix, respec-
tively. The symbols

N
and

J
denote the Kronecker

product and Khatri–Rao product. �k kF denotes for the
Frobenius norm. The symbol ∘ denotes the outer product
of vectors, for example, a ∘b ∘c. A hat atop stands for esti-
mates, for example, â.

2 | DATA MODEL

2.1 | Signal model of coprime planar
array

Consider a generalized coprime planar array (GCPA)
[18], which is composed of two uniform rectangular sub-
arrays equipped with N1�M1 and N2�M2 sensors,
where N1 and N2 represent the numbers of sensors on
the x-axis while M1 and M2 represent the numbers of
sensors on the y-axis. N1 and N2 are coprime integers as
well as M1 and M2. The two subarrays have only one
common sensor at the origin, and the adjacent distances
between sensors in subarray 1 are dð1Þx ¼N2λ=2 and
dð1Þy ¼M2λ=2, while the intersensor spacings of subarray 2
are taken as dð2Þx ¼N1λ=2 and dð2Þy ¼M1λ=2, where λ rep-
resents the wavelength. Figure 1 shows a simple example
of the GCPA.

Assume that R far-field narrowband uncorrelated sig-
nals are simultaneously impinging on a GCPA. Let
srðtÞ�C, for r¼ 1,…,R, t¼ 0,1,…, represents the rth
source signal. The output of ith subarray (i� f1,2g) can
then be expressed as [30]

~xðiÞðtÞ¼AðiÞsðtÞþnðiÞðtÞ, t¼ 0,1,2,…, ð1Þ

where ~xðiÞðtÞ¼ ½~xðiÞ1 ðtÞ, …, ~xðiÞNiMi
ðtÞ�T CNiMi , sðtÞ¼

½s1ðtÞ, …, sRðtÞ�T �CR represents the vector of source
signals, nðiÞðtÞ¼ ½nðiÞ1 ðtÞ, …, nðiÞ

NiMi
ðtÞ�T CNiMi denotes the

additive Gaussian i.i.d noise vector, and AðiÞ ¼
½aðiÞ1 , … ,aðiÞR ��CNiMi�R is the direction matrix consisting of
the steering vectors aðiÞr . The steering vector aðiÞr is related
to the geometry of the ith subarray and DOAs of the rth
incident signals. For brevity, we assume free space propa-
gation further, and the steering vector aðiÞr can be given
by [30]

aðiÞr ¼ aðiÞy,r
O

aðiÞx,r , ð2Þ

where aðiÞx,r , a
ðiÞ
y,r represent the steering vectors of the ith

subarray along the x-axis and y-axis, which can be writ-
ten as [17]

aðiÞx,r ¼ 1, exp �j2πdðiÞx ur=λ
� �

,
h
…, exp �j2πðNi�1ÞdðiÞx ur=λ

� �iT
,

ð3Þ

aðiÞy,r ¼ 1, exp �j2πdðiÞy υr=λ
� �

,
h
…, exp �j2πðMi�1ÞdðiÞy υr=λ

� �iT
,

ð4Þ

where ur ¼ sinθr cosϕr , υr ¼ sinθr sinϕr , and θr and ϕr

denote the elevation and azimuth angle, respectively.
Suppose that L snapshots are available, and then the

observed data matrix of ith subarray can be compactly
expressed as

CNiMi�L 3 ~X
ðiÞ ¼AðiÞSþNðiÞ

¼ AðiÞ
y

J
AðiÞ

x

� �
SþNðiÞ,

ð5Þ

where AðiÞ
y ¼ ½aðiÞy,1, …, aðiÞy,R��CMi�R, AðiÞ

x ¼ ½aðiÞx,1, … ,aðiÞx,R�
CNi�R, S¼ ½s1, s2, …, sR�T �CR�L denotes source matrix,

and NðiÞ denotes the corresponding noise matrix.

2.2 | Coupled CPD model for source
separation

What we are concerned with in blind source separation is
estimating the source matrix S by observing noisy data
feXð1Þ

, eXð2Þg. The array’s geometry can be used to accom-
plish this purpose. It is easy to notice that (5) is a slice

F I GURE 1 The geometry of a generalized coprime planar

array, where N1 ¼ 5, M1 ¼ 3, N2 ¼ 6 and M2 ¼ 4
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representation of a three-order tensor that can admit the
PARAFAC model or CPD. The CPD writes a tensor
X �CI�J�K as a sum of rank-1 terms [22]

X ¼
XR
r¼1

ar ∘br ∘cr , ð6Þ

where ar �CI , br �CJ , and cr �CK are the rth columns
of factor matrices A�CI�R, B�CJ�R, and C�CK�R.

Though CPD can be used to achieve source separa-
tion, there is a more appropriate model for GCPA, named
coupled CPD. It extends the CPD model to scenarios in
which multiple tensors share at least a common factor
matrix. A coupled CPD of a set of tensors XðnÞ �CIi�Ji�K ,
n� f1, …, Ng, can be expressed as [29]

XðnÞ ¼
XR
r¼1

aðnÞr ∘bðnÞr ∘cr , ð7Þ

where aðnÞr �CIn and bðnÞr �CJn are similar to ar and br
and cr �CK is the common vector. Furthermore, the fac-
tor matrices are AðnÞ �CIn�R, BðnÞ �CJn�R, and C�CK�R.

According to the coupled CPD model, we can
obtain the tensor form’s noiseless observed data for
GCPA as

CMi�Ni�L 3XðiÞ ¼
XR
r¼1

aðiÞy,r ∘a
ðiÞ
x,r ∘ sr , i� f1, 2g: ð8Þ

The coupled CPD of the tensor form is simple, but
sometimes it is more convenient to employ its matrix
unfolding or slice representation like (5). There are three
slice representations of a three-way tensor [29]. Define
the horizontal slice matrix Xðm��,iÞ �CNi�L with elements
defined as ðXðm��,iÞÞnl ¼ðXðiÞÞmnl, and we have the follow-
ing unfolding matrix expressions for GCPA by parallel
stacking,

CMiNi�L 3XðiÞ
ð1Þ :¼

Xð1��,iÞ

..

.

XðMi��,iÞ

2
664

3
775¼ AðiÞ

y
K

AðiÞ
x

� �
S: ð9Þ

Similarly, let Xð�n�,iÞ �CL�Mi and Xð��l,iÞ �CMi�Ni

denote the lateral slice matrix and the frontal slice matrix
for which ðXð�n�,iÞÞlm ¼ðXð��l,iÞÞmn ¼ðXðiÞÞmnl. Hence,
another two unfolding matrices are defined as

CNiL�Mi 3XðiÞ
ð2Þ :¼

Xð�1�,iÞ

..

.

Xð�Ni�,iÞ

2
664

3
775¼ AðiÞ

x
K

ST
� �

AðiÞT
y , ð10Þ

CMiL�Ni 3XðiÞ
ð3Þ :¼

Xð��1,iÞ

..

.

Xð��L,iÞ

2
664

3
775¼ ST

K
AðiÞ

y

� �
AðiÞT

x : ð11Þ

In addition to unfolding matrices in (9), (10),
and (11), the overall matrix representation of the coupled
CPD of f~Xð1Þ

, eXð2Þg is also employed,

CðM1N1þM2N2Þ�L 3X :¼
Xð1Þ
ð1Þ

Xð2Þ
ð1Þ

2
4

3
5¼FS, ð12Þ

where F takes the form as

F¼ Að1Þ
y

J
Að1Þ

x

Að2Þ
y

J
Að2Þ

x

" #
: ð13Þ

Remark 1. In this study, we assume that the
number of sources R is known aforehand, and
R<NiMi.

3 | PROPOSED APPROACH

In this section, we review the standard approach to calcu-
late CPD using coupled TALS algorithm and propose a
new coupled TALS algorithm incorporating the Vander-
monde structure to accelerate convergence subsequently.
The complexity analysis and the proposed approach’s
advantages are provided at the end of this section.

3.1 | Basic coupled TALS

Numerous algorithms for coupled CPD have been pro-
posed [29], and the coupled TALS approach is the most
popular approach among these algorithms. The coupled
TALS approach is readily computable and easy to imple-
ment. The coupled TALS turns the signal separation
problem into the minimization of a quadratic cost func-
tion using a least squares criterion:
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min
Að1Þ

y ,Að2Þ
y ,Að1Þ

x ,Að2Þ
x ,S

~Xð1Þ �
XR
r¼1

að1Þy,r ∘a
ð1Þ
x,r ∘ sr

�����
�����
2

F

þ ~Xð2Þ �
XR
r¼1

að2Þy,r ∘a
ð2Þ
x,r ∘ sr

�����
�����
2

F

:

ð14Þ

In (14), there are five unknown parameters, making
the direct computation difficult. The coupled TALS
approach uses the multilinearity and coupled property
to achieve coupled CPD by alternately updating the
estimates of factor matrices. More specifically, the above
minimization problem can be equivalently expressed as

min
Að1Þ

y ,Að2Þ
y ,Að1Þ

x ,Að2Þ
x ,S

~X�FS
�� ��2

F: ð15Þ

Fixing the factor matrices Að1Þ
y , Að2Þ

y , Að1Þ
x , and Að2Þ

x to
previous estimates Âð1Þ

y ,Âð2Þ
y , Âð1Þ

x and Âð2Þ
x , the estimate

of coupling factor matrix S can be attained by

Ŝ¼ F̂
†~X¼

Â
ð1Þ
y

J
Â

ð1Þ
x

Â
ð2Þ
y

J
Â

ð2Þ
x

2
4

3
5
†

~X
ð1Þ
ð1Þ

~X
ð2Þ
ð1Þ

2
4

3
5, ð16Þ

where ~X
ð1Þ
ð1Þ, ~X

ð2Þ
ð1Þ, and ~X denote data matrix affected by

noise in (9) and (12).
Similarly, the estimation of Að1Þ

y , Að2Þ
y , Að1Þ

x , and Að2Þ
x

can be achieved by solving the following minimization
problem,

min ~X
ðiÞ
ð2Þ � AðiÞ

x
K

ST
� �

AðiÞT
y

��� ���2
F
, ð17Þ

min ~X
ðiÞ
ð3Þ � Ŝ

TK
Â

ðiÞ
y

� �
Â

ðiÞT
x

��� ���2
F
: ð18Þ

where ~X
ðiÞ
ð2Þ and ~X

ðiÞ
ð3Þ represent data matrix with noise

in (10) and (11), i� f1,2g.
Thus, the estimates of Að1Þ

y , Að2Þ
y , Að1Þ

x , and Að2Þ
x can be

found by the conditional updating

Â
ðiÞT
y ¼ Â

ðiÞ
x

K
Ŝ
T

� �†
~X
ðiÞ
ð2Þ, ð19Þ

Â
ðiÞT
x ¼ Ŝ

TK
Â

ðiÞ
y

� �†
~X
ðiÞ
ð3Þ, ð20Þ

where Ŝ represents the current estimate of the factor
matrix S (source matrix).

The coupled TALS approach computes (16), (19),
and (20) alternately until convergence. For the first itera-
tion, the factor matrices are randomly initialized.

Remark 2. Similar to most blind separation
algorithms, this algorithm also has the prob-
lem of permutation and scale ambiguity; thus,
the source signals can be estimated in an arbi-
trary order [28,29].

3.2 | Vandermonde structure enforcing

Though in most situations the basic coupled TALS
approach can achieve signal separation, it is observed
through simulations that the convergence rate of
basic coupled TALS can be enhanced using the signal
propagation model’s characteristics. Thus, we propose
the use of the Vandermonde structure to enhance the
algorithm’s performance. It is easy to be observed that (3)
and (4) are the form of Vandermonde vectors,

aðiÞy,r ¼ 1, zðiÞy,r , …, ðzðiÞy,rÞ
Mi�1

h iT
, ð21Þ

aðiÞx,r ¼ 1, zðiÞx,r , …, ðzðiÞx,rÞ
Ni�1

h iT
, ð22Þ

where zðiÞy,r ¼ exp ð�j2πdðiÞy υr=λÞ and zðiÞx,r ¼ exp

ð�j2πdðiÞx ur=λÞ, i� f1,2g, r � f1, …, Rg.
Using Vandermonde vector’s structural characteris-

tics, we can perform the estimation of zðiÞy,r and zðiÞx,r in the
iteration steps by

ẑðiÞy,r ¼ âðiÞy,r
� �†

â
ðiÞ
y,r

� �
, ð23Þ

ẑðiÞx,r ¼ âðiÞx,r
� �†

â
ðiÞ
x,r

� �
, ð24Þ

where âðiÞy,r , â
ðiÞ
y,r are obtained by removing the last and first

elements of âðiÞy,r , the rth column vector of ÂðiÞ
y ; âðiÞx,r , â

ðiÞ
x,r

are acquired from ÂðiÞ
x in a similar way. After attaining

ẑðiÞy;r and ẑðiÞx,r , the new estimates âðiÞy,r , â
ðiÞ
x,r can be recon-

structed according to (21) and (22). The previous factor
matrices ÂðiÞ

y and ÂðiÞ
x are then substituted by new ones

accordingly.

142 QUE ET AL.



Notably, this Vandermonde structure enforcing
scheme overcomes the disadvantage of scaling ambigui-
ties in the basic coupled TALS approach.

The proposed approach’s overall procedure is given in
Algorithm 1.

Remark 3. There are extra steps, such as
computing the cost function to determine
whether or not to stop the iteration, in addi-
tion to the above computing steps. These steps
are not described here because different stop
criteria can be used in practice.

Remark 4. The estimates of DOA can also
be obtained from ÂðiÞ

x , ÂðiÞ
y via coprime char-

acteristics of the array. Furthermore, the
steering vectors for the same source from dif-
ferent subarrays are automatically paired
thanks to joint decomposition. The detailed
steps to estimate DOA can be found in Zhang
and others [26].

3.3 | Complexity analysis

Here, complexity is measured in terms of complex multi-
plication operations. For brevity, we use the abbrevia-
tions ops to refer to complex multiplication operations.
From (16), (19), and (20), we conclude that the computa-
tional cost of the basic coupled TALS is dominated by
computing pseudo-inverses. The first step of computing Ŝ
requires approximately R3þ2R2 M1N1þM2N2ð Þþ
M1N1þM2N2ð ÞRL ops. Similarly, the steps of computing
ÂðiÞ

y and ÂðiÞ
x , i� f1,2g, requires about 2R3þ

2R2 N1þN2ð ÞLþðM1N1þM2N2ÞRL ops and 2R3þ
2R2 M1þM2ð ÞLþðM1N1þM2N2ÞRL ops, respectively.
Then, the total number of ops in each iteration is 5R3þ
2R2 M1LþM2LþN1LþN2LþM1N1þM2N2ð Þþ3ðM1N1

þM2N2ÞRL.
Because the proposed approach is based on the basic

coupled TALS, the major computational cost is the same.
The additional computational cost introduced from (23)
and (24) is about R 3 M1þM2þN1þN2ð Þ�8ð Þ ops, and
the complexity of reconstruction of ÂðiÞ

y and ÂðiÞ
x is

approximately M1þM2þN1þN2�8 ops.
Our approach seems more computational expensive

at first glance; however, it is cheaper because the number
of total iterations is not considered. The number of itera-
tions to approach convergence varies with different algo-
rithms and depends on numerous factors. As shown in
the simulations in the next section, our approach can
reduce total iterations and overall time consumption
compared with the basic coupled TALS.

3.4 | Advantages

The proposed approach has the following advantages:

1. The proposed approach outperforms the independent
TALS approach in terms of signal separation accuracy.

2. The proposed approach has lower computational com-
plexity than the independent TALS and basic coupled
TALS approaches.

3. The proposed approach requires no parameter tuning
and is still efficient when signals have close DOAs.

4 | NUMERICAL EXPERIMENTS

In this section, we show the proposed approach’s signal
separation performance for a GCPA by numerical experi-
ments. Consider R¼ 4 narrowband far-field signals
received by a GCPA, whose output sampling rate is
100 MHz. Table 1 shows the mathematical expressions
and DOAs of the source signals.
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The experiments are performed using the coprime
planar array’s signal model described in Section 2 with-
out considering the mutual coupling effect and array
error. The number of the elements of subarray 1 is N1 ¼ 5
and M1 ¼ 3, while the number of elements of subarray 2
is N2 ¼ 6 and M2 ¼ 4. Assume that the observed data of
the matrix form obtained from the output of subarrays is
~X
ðiÞ
ð1Þ ¼XðiÞ

ð1Þ þNðiÞ
ð1Þ, i� f1,2g, where XðiÞ

ð1Þ is the noise-free
observed matrix and NðiÞ

ð1Þ is the additive zero-mean
complex Gaussian noise matrix. The signal-to-noise
ratio is then defined as follows:

SNR ½dB � ¼ 10log10

X2

i¼1
XðiÞ

ð1Þ
��� ���2

F
=
X2

i¼1
NðiÞ

ð1Þ
��� ���2

F

� �
:

We compare the proposed approach’s performance
with the basic coupled TALS and the subarray indepen-
dent TALS. For brevity, the approaches will be referred to
as CTALS-VDM, CTALS-Basic, and TALS, respectively.
The algorithms’ separation accuracy is evaluated using
the relative error between source matrices and their
estimates. The relative error is defined as follows:

error¼ min
ΠΛ

S�ŜΠΛ
�� ��

F= Sk k
F
,

where Λ and Π represent the optimally diagonal matrix
and permutation matrix, respectively, for solving the
scale and permutation ambiguity problems in the decom-
position. This relative error was computed using cpderr.
m in the tensorlab 3.0 [31]. Furthermore, to compare the
algorithms’ time complexity, we recorded the running
time of different algorithms using the built-in function tic
∖ toc in MATLAB.

Define cost function as the residual sum of squares,
ψðkÞ¼P2

i¼1
~X
ðiÞ
ð1Þ � X̂

ði,kÞ
ð1Þ

��� ���2
F
, where X̂

ði,kÞ
ð1Þ denotes the

unfolding matrix of the estimate of tensor XðiÞ at the
kth iteration. The algorithms are considered convergent
when ψðkþ1Þ�ψðkÞj j=ψðkÞ < ϵ¼ 1e�8. The algorithm
is terminated even if the convergence condition is not
satisfied when the number of iterations exceeds 2000.

Figure 2A illustrates the time-domain waveforms of
source signals, while the time-domain waveforms of

separated signals obtained by the proposed algorithm are
illustrated in Figure 2B, for snapshots L¼ 600 and SNR =

5 dB. The proposed algorithm can separate source signals
accurately without visible distortion.

Figures 3 and 4 show the comparison of the accuracy
and the computational cost, respectively, among the algo-
rithms versus SNR for snapshots L¼ 1000, with
400 Monte Carlo trials for each SNR. As shown in
Figure 3, the separation error of CTALS-VDM and
CTALS-Basic is less than that of TALS-Subarray. This
result is as expected because CTALS-VDM and CTALS-
Basic make full use of the entire array’s information. As

TAB L E 1 Mathematical expressions and incident angles of the source signals

Mathematical expressions Elevation Azimuth

Signal 1 cosð2π�6�106tÞ θ1 ¼ 10 ∘ ϕ1 ¼ 15 ∘

Signal 2 cosðπ�8�1011t2þ2π�2�106tÞ θ2 ¼ 20 ∘ ϕ2 ¼ 25 ∘

Signal 3 cosð2π�4�105tÞcosð2π�5�106tÞ θ3 ¼ 30 ∘ ϕ3 ¼ 35 ∘

Signal 4 cosð2π�ð4�106þ8�104 cosðπ�3�105tÞÞtÞ θ4 ¼ 40 ∘ ϕ4 ¼ 45 ∘

F I GURE 2 Simulated source signals and the separated signals

by the proposed method (SNR = 5 dB; L¼ 600): (A) The time-

domain waveforms of the source signals and (B) the time-domain

waveforms of the separated signals

144 QUE ET AL.



shown in Figure 4, the CTALS-VDM requires the least
computation time compared with other algorithms. The
time required by TALS here is defined as the sum of the
time for two subarrays, and it is significantly longer than
the time required for CTALS-VDM and CTALS-Basic,
implying that the coupled CPD model can considerably
reduce computational cost.

We provide a detailed complexity analysis of the find-
ings for the experiments shown in Figure 4 to further
clarify the proposed approach’s improvement in compu-
tational complexity. The median and mean number of
iterations of CTALS-Basic and CTALS-VDM versus SNR
are compared in Figure 5A and Figure 5B, respectively.
As shown in Figure 5, the median number of iterations of
CTALS-Basic and CTALS-VDM are approximately
20 and 13, respectively, while the mean number of itera-
tions of CTALS-Basic and CTALS-VDM are around
64 and 14. The mean number of iterations of CTALS-
Basic is substantially higher than the median value,

implying that the number of iterations required by
CTALS-Basic has a larger fluctuation range. However,
the median and mean number of iterations of CTALS-
VDM are quite close and smaller than those of CTALS-
Basic, indicating that it is more stable and excellent in
terms of computation time. Typical cost function curves
for one trial of Figure 4 when SNR = 5 dB are shown in
Figure 6. CTALS-VDM reaches the convergence condi-
tion faster than CTALS-Basic.

Figure 7 shows the comparison of the separation
accuracy performance among the algorithms with differ-
ent snapshots L, where SNR = 10 dB and the number of
Monte Carlo trials at different snapshots is 200. As shown
in Figure 7, the separation accuracy of CTALS-VDM and
CTALS-Basic at different snapshots is better than that of
subarray independent TALS. The curves of each algo-
rithm in Figure 7 are approximated as lines with zero
slopes, implying that the length of the data affects separa-
tion accuracy little and that more signal samples do not
enhance the accuracy of signal separation. This finding
differs from research results on other well-known blind
separation algorithms such as SOBI because the
approaches here do not explicitly use the characteristics
of signal independence and signal statistics.

Figure 8 compares the computational cost of the algo-
rithms with different snapshots. The computation time of
CTALS-VDM is still shorter than the other algorithms at

F I GURE 3 Accuracy of different algorithms over 400 trials

versus SNR (L¼ 1000)

F I GURE 4 Computation time of different algorithms over 400

trials versus SNR (L¼ 1000)

F I GURE 5 The number of iterations of CTALS-Basic and

CTALS-VDM over 400 trials versus SNR (L¼ 1000): (A) Median

number of iterations and (B) mean number of iterations
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different snapshots. The complexity of different algo-
rithms’ computation is approximately proportional to
snapshots, which is consistent with the findings of our
complexity analysis in the previous section. Similarly, we
also give a detailed complexity analysis of the the find-
ings for the experiments shown in Figure 8. Figure 9A
and Figure 9B compare the median and mean number of
iterations, respectively, of CTALS-Basic and CTALS-
VDM with different snapshots. The results show that
CTALS-VDM is more stable and excellent in terms of
computation time for different snapshots and the itera-
tions are slightly affected via snapshots.

To demonstrate the performance of our algorithm
when there are closely spaced signals, consider the same
source signals as in the previous experiments but with
different DOAs. The DOAs of signals 1, 3, and 4 remain
the same, while the elevation angle of signal 2, θ2 ¼Δ
varies from 1 ∘ to 25 ∘ and the azimuth angle ϕ2 ¼Δþ5 ∘ .
The step size of Δ is 0:8 ∘ .

In Figure 10, the mean relative error of each algo-
rithm varies with DOA of signal 2 where SNR = 10 dB,
the number of snapshots L¼ 1000, and the number of
Monte Carlo trials at different angles is 100. As illustrated
in Figure 10, when the incidence angle of signal
2 approaches that of signal 1, all algorithms’ separation
accuracy tends to be worse. However, CTALS-Basic and

F I GURE 7 Accuracy of different algorithms over 200 trials

versus snapshots (SNR = 10 dB)

F I GURE 8 Computation time of different algorithms over

200 trials versus snapshots (SNR = 10 dB)

F I GURE 9 The number of iterations of CTALS-Basic and

CTALS-VDM over 200 trials versus snapshots (SNR = 10 dB):

(A) Median number of iterations and (B) mean number of

iterations

F I GURE 6 The evolution curves of the residual sum of

squares for CTALS-Basic and CTALS-VDM in one trial, (SNR = 5

dB; L¼ 1000)
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CTALS-VDM have narrower peak widths when compar-
ing the angular separation of deterioration for different
algorithms, implying that they have better performance
in terms of spatial resolution. There are two unusual
peaks around θ2 ¼ 3 and θ2 ¼ 7 for TALS-Subarray1 and
TALS-Subarray2, respectively. The reason for this result
is that the approaches of separate subarray processing
have the phase ambiguity problem. Though the DOAs of
signals are unique, the steering vectors may be close,
which may affect the condition of the problem and cause
the separation performance to decrease at some particu-
lar angles. However, there are no unexpected peaks in
the curves of CTALS-Basic and CTALS-VDM, indicating
that they have better stability.

5 | CONCLUSIONS

In this study, a blind signal separation issue for coprime
planar arrays has been considered. This problem has
been formulated as a coupled CPD problem using the fact
that subarrays share the same source matrix. This novel
formulation allows full use of the information of the
entire array so that improved separation accuracy can be
attained through coupled CPD. A novel coupled TALS
using the Vandermonde structure enforcing approach
has been proposed to deal with the time complexity. The
simulation experiments reveal that our proposed algo-
rithm is more efficient than basic coupled TALS when
using Vandermonde structure characteristics in the pro-
cedure of alternating conditional least squares. Further-
more, as demonstrated in simulations, our proposed
approach is more stable compared with separate subarray
processing.
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