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Abstract

Breakthrough of high Weisenberg number problem is related with keeping the positive definiteness of the con-
formation tensor in numerical procedures. In this paper, we suggest a simple method to preserve the positive
definiteness by use of vector decomposition of the conformation tensor which does not require eigenvalue
problem. We also derive the constitutive equation of tensor-logarithmic transform in simpler way than that of
Fattal and Kupferman and discuss the comparison between the vector decomposition and tensor-logarithmic
transformation.
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1. Introduction

Numerical calculation with nonlinear viscoelastic models

suffers from convergence problem when Weisenberg num-

ber is considerably high (Keunings, 1986). The high

Weisenberg number problem is thought to be originated

from singular geometry in case of 4:1 contraction flow

modeling, instability of numerical algorithm and nonlinear

viscoelastic constitutive equations. The instability of con-

stitutive equation can be removed by adopting stable con-

stitutive equations such as the Leonov model, the Phan-

Thien and Tanner model and so on (Kwon and Leonov,

1995). However, some numerical errors which may be due

to spatial discretization, result in the break of positive def-

initeness of the conformation tensor of the stable consti-

tutive equations. The breakthrough of this problem seems

to have been developed by Fattal and Kupferman (2004).

The method is called tensor-logarithmic transformation of

the conformation tensor.

The tensor-logarithmic transformation is known to pre-

serve positive definiteness of the conformation tensors in

any computational steps. It is also known that the positive

definiteness of conformation tensor is very important for

the well-posedness of its evolution equation (Kwon, 2004).

Preserving the positive definiteness can be done by vector

decomposition of the conformation tensor which is simpler

than the tensor-logarithmic transformation in mathematics.

In this paper, an alternative of the tensor-logarithmic trans-

form is suggested which is called vector decomposition of

the conformation tensor. We derived the evolution equation

of the logarithmic conformation tensor developed by Fattal

and Kupferman in a simpler way, too.

2. Vector Decomposition

2.1. Positive Definiteness
It is easily understood that a symmetric tensor made of

the dyadic of a vector A =aa is positive definite, because

x ·A · x= (a · x)
2. It is also straightforward that a tensor

made of the product of a tensor with its transpose

 is symmetric and positive definite. Here we

consider C as the conformation tensor. We define con-

formation vector as C = fifi. We adopt  as the orthonor-

mal base vectors and use summation convention. Then

fi=Fe · ei is an example of the conformation vector, because

there are so many ways possible to construct the confor-

mation tensor by the summation of the dyadics of vectors.

Since the conformation tensor is the identity tensor at ini-

tial time t=0, it is clear that the conformation vectors are

initially the orthonormal base vectors, say fi(0)=ei.

2.2. Evolution Equation of the Conformation Tensor
It is well known that most Maxwellian fluid models can

be converted into the canonical form such that

(1)

where the tensor valued function H is called dissipation

tensor. The extra stress tensor is given by T=G (C− I) in

C Fe Fe

T⋅=

ei{ }

dC

dt
------- L C C L

T 1

λ
---H C( )+⋅–⋅– 0=
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the simplest case, where G is the shear modulus, λ is the

relaxation time and I is the identity tensor (Kwon and

Leonov 1995). In case of the Leonov model we know that

 (2)

where b(IC, IIC) is a positive function of the principal

invariants of the conformation tensor. For the Phan-Thien

and Tanner model, we know that

 (3)

where

 (4)

and ε is the nonlinear parameter of the Phan-Thien and

Tanner model. For the Giesekus model

 (5)

where a is the nonlinear parameter of the Giesekus model

whose value is in the range .

We need evolution equations of the conformation vectors

which must be coincide with that of the conformation ten-

sor. We assume the evolution equations of the conforma-

tion vectors as

 (6)

where the tensor L is the velocity gradient  and

the symmetric tensor Dp will be determined by the com-

parison of Eq. (6) with Eq. (1). From Eq. (6) we know that

the conformation vector increases as time due to velocity

gradient and relaxes by the influence of the irreversible

deformation rate tensor Dp. The relaxation time λ controls

the speed of the relaxation.

2.3. Determination of Dp

Using the definition of the conformation vector, the mate-

rial time derivative of the conformation tensor is given by

 (7)

Hence substitution of Eq. (7) into Eq. (1), we know that

 (8)

Comparison of Eq. (8) with Eq. (1) yields

 (9)

In order to express Dp in terms of H and C, we use the

results of Rosati (2000):

(10)

where k=ICIIC− IIIC and  IIIC= detC. At the first look,

Eq. (10) seems too complex to be used in numerical cal-

culation. Because H is a polynomial of C, Eq. (10) implies

that DP has the form of 

 (11) 

where  are functions of the principal invariants of C.

Eq. (11) implies that DP is coaxial with C, .

Hence Eq. (9) becomes simpler:

 (12) 

Eq. (12) allows us to calculate the tensor DP for the three

viscoelastic models as follows:

Leonov model (13)

PTT model (14)

Giesekus model (15) 

Instead of Eq. (1), the use of Eq. (6) with C = fkfk guar-

antees the positive definiteness of the conformation tensors

irrespective of computational schemes and the value of the

Weisenberg number.

By use of the Hamilton-Cayley theorem, we know that

(16)

and

(17)

In case of the Leonov model, the determinant of the con-

formation tensor is unity and from Eqs. (13), (16) and (17),

we know that

 (18) 

Furthermore the tensor DP of Eq. (13) is equivalent to the

irreversible deformation rate tensor defined from the orig-

inal Leonov model (Leonov 1976).

It is noteworthy to express the principal invariants of the

conformation tensor in terms of conformation vectors:

 (19)

(20)

 (21)

H
b IC IIC,( )

2
--------------------- C

2
I–

IC IIC–

3
---------------C–⎝ ⎠

⎛ ⎞=

H φ IC( ) C I–( )=

φ IC( ) ε IC 3–( )[ ]exp=

H αC
2

1 2α–( )C 1 α–( )I–+=

0 α 1< <

dfk

dt
------ L fk

1

λ
---Dp fk⋅–⋅=

L v∇( )T=

dC

dt
-------

dfk

dt
------fk fk

dfk

dt
------+=

dC

dt
------- L C C L

T 1

λ
--- C DP DP C⋅+⋅( )+⋅–⋅– 0=

C DP DP C⋅+⋅ H=

2kIIICDP 2 IC

2
IIIC–( )IIICH 2IIIC C

2
H H C

2
⋅+⋅( )–=

 ICIIC

2
IICIIIC IC

2
IIIC–+( )tr H( )I IC

2
II tr H( )C tr H C⋅( )I–[ ]–+

 ICIIC IIIC+( ) tr H( )C2
tr H C

2⋅( )I+[ ] IC

3
IIICtr H C⋅( )C+ +

ICtr H C
2⋅( )C2

IC

2
tr H C⋅( )C2

tr H C
2⋅( )C+[ ]–

DP d0I d1C d2C
2

+ +=

di{ }
DP C⋅ C DP⋅=

DP
1

2
---C

1–
H⋅=

DP

b IC IIC,( )
4
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1–

–
IC IIC–

3
---------------I–⎝ ⎠
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DP

φ IC( )
2

------------ I C
1–

–( )=
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α
2
---C

1 2α–
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1 α–
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1–
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IIC
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IC
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--------= = =

tr DP( ) 0=

IC trC f1

2
f2

2
f3

2
+ + fk fk 0≥⋅= = =

IIC f1 f1⋅( ) f2 f2⋅( ) f1 f2⋅( )2
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3. Tensor-Logarithmic Transformation

Fattal and Kupferman (2004) suggested the tensor-log-

arithmic transformation of the conformation tensor. Their

derivation of the transformation is not easy to be under-

stood because they used a matrix decomposition theorem

which is not widely known and decomposition of the evo-

lution of the logarithmic conformation tensor into four spe-

cial cases: advection, rotation, extension and sources. In

this section, we derive the tensor-logarithmic transforma-

tion in a simpler way.

If we denote the eigenvectors of the conformation tensor

as  and eigenvalues as , we have

C =c1n1n1+c2n2n2+c3n3n3  (22)

Since a symmetric and positive definite tensor has pos-

itive distinct eigenvalues and its eigenvectors are orthog-

onal, we can adopt the eigenvectors as the orthonormal

vectors. Assume that .

Since the unit eigenvectors ni must keep orthonormal, it

is reasonable assumption that 

 (23)

where Ω is a skew-symmetric tensor because the orthog-

onality of the eigenvectors should be preserved:

 (24)

From Eq. (22), we know that

(25)

Comparison of Eq. (25) with Eq. (1) yields

(26)

Since the dissipation tensor H is coaxial with C, we can write

 (27)

Using the eigenvectors as the base vector, we can write

(28)

(29)

            

            

          

          

          

(30)

Hence Eq. (26) is equivalent to

 (no sum on k) (31)

 (no sum) (32)

Eq. (31) implies that

(33)

where the tensor B is symmetric because B is defined as

 (34)

Hence it is clear that for incompressible fluid

tr(B) = tr(L)=0  (35)

Now we define S= logC such that

 (36)

The material time derivative of S is given by

(37)

From Eq. (33), we know that

(38)

Substitution of Eq. (38) into Eq. (37) yields

 (39)

which is the constitutive law derived by Fattal and Kup-

ferman (2004). In Eq. (39) we used the notation such that

C=eS and C−1=e−S. It is interesting that the last term of Eq.

(39) is just the irreversible deformation rate tensor DP

derived in Eq. (12).

When we find a numerical solution of , any

numerical method cannot give considerably accurate solu-

tion whenever  is so large and we want a solution for

long time t>>1. However, if we use y=logx, the ordinary

differential equation becomes simpler: , which

can be solved easily irrespective of the range of time and

the magnitude of a. Hence, from this viewpoint, the trans-

formation of Fattal and Kupferman seems to be effective

for high Weisenberg problem. However, as seen in Eq.

(39), the tensor-logarithmic transformation requires the

determination of eigenvectors and eigenvalues of the con-

formation tensor at every calculation steps because we

have to determine the tensors Ω, B, and C=eS by use of the

solution of eigenvalue problem. 

Although tensor S may have some components whose

magnitude is extraordinarily large, the formulation guar-

ni{ } ci{ }

ni nk⋅ δik=

dni

dt
------- Ω ni⋅=

d

dt
---- ni nk⋅( ) ni Ω Ω

T⋅( ) nk⋅ ⋅ 0= =

dC

dt
-------

dck

dt
-------nknk Ω C C Ω

T⋅+⋅+
k 1=

3

∑=

L C C L
T 1

λ
---H C( )–⋅+⋅ Ω C C Ω

T dck

dt
-------nknk

k 1=

3

∑+⋅+⋅=

1

λ
---H C( )

hk IC IIC IIIC,,( )
λ

----------------------------------nknk

K 1=

3

∑=

L Liknink  Ω, Ωiknink= =

L C C L
T⋅+⋅ 2L11c1n1n1=

2L22c2n2n2

2L33c3n3n3

 L12c2 L21c1+( ) n1n2 n2n1+( )+

 L23c3 L32c2+( ) n2n3 n3n2+( )+

 L31c1 L13c3+( ) n3n1 n1n3+( )+

Ω C C Ω
T⋅+⋅ Ω12 c2 c1–( ) n1n2 n2n1+( )=

 Ω23 c3 c2–( ) n2n3 n3n2+( )+

Ω31 c1 c3–( ) n3n1 n1n3+( )

dck

dt
------- 2Lkkck

hk

λ
----–=

cjLij cjLji+ cj ci–( )Ωij  i j≠( ),=

dck

dt
-------nknk

k 1=

3

∑ 2C B
1

λ
---H–⋅=

B Lkknknk

k 1=

3

∑=

S cknknklog
k 1=

3

∑=

dS

dt
------ 1

ck

----
dck

dt
-------nknk Ω S S Ω

T⋅+⋅+
k 1=

3

∑=

1

ck

----
dck

dt
-------nknk

K 1=

3

∑ 2B
1

λ
---C

1–
H⋅–=

dS

dt
------ Ω S S Ω

T
2B

1

λ
---e

S–
H e

S( )⋅––⋅–⋅– 0=

dx dt⁄ ax=

a 0>

dx dt⁄ a=
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antees positive definiteness of the conformation tensor.

Compared with tensor-logarithmic transformation, the vec-

tor decomposition keeps the positive definiteness at any

calculation step irrespective of the magnitude of Weisen-

berg number, in principle. Furthermore, the vector decom-

position does not require solving the eigenvalue problem at

every calculation step. 

The strong point of tensor-logarithmic transform, com-

pared with vector decomposition, is the stability in numer-

ical scheme as exampled by the ordinary differential

equation  while its weak point is to use eigen-

vector. Although vector decomposition preserves the pos-

itive definiteness of the conformation tensor and does not

require solution of eigenvalue problem, it does not seem to

have the merit of the tensor-logarithmic transform in

numerical stability. However, if the positive definiteness of

the conformation tensor is the most important factor in

high Weisenberg number problem, the vector decompo-

sition will be very useful.

4. Diversity of the Conformation Vector

As mentioned in section 2, there may be several sets of

conformation vectors which construct conformation tensor

by . For a laboratory coordinate system we can

write  and set  to satisfy .

However it is clear that two sets of conformation vectors

that have the same initial conditions are identical during

the whole deformation history if and only if their evolution

equations are identical as Eq. (6). It is because the evo-

lution equation Eq. (6) is deterministic. 

In numerical procedure, it is one of the simplest initial

conditions that fi (0)=ei. The initial conditions are expected

to make the vector decomposition free from the diversity

of the conformation vector. 

5. Comparison of the Two Methods

Since tensor S of Eq. (39) is symmetric, the tensor-log-

arithmic transform deals with only six independent com-

ponents. Although the conformation tensor has only six

independent components, the vector decomposition, in gen-

eral requires nine components to be calculated. Hence the

vector decomposition seems not efficient in numerical cal-

culation compared with the tensor-logarithmic transform.

However, in two-dimensional problem, both the vector

decomposition and the tensor-logarithmic transform have

the same number of independent components, four. In case

of the Leonov model, the conformation tensor should sat-

isfy IIIC=1, which implies

 (40)

Thus, the vector decomposition for the Leonov model

deals with six independent components.

6. Conclusions

We suggest a simple method to preserve the positive def-

initeness of the conformation tensor at any step of numer-

ical schemes by considering the conformation vector as the

sum of the dyadics of the conformation vectors and by

showing the evolution equation (6) of the conformation

vectors is equivalent to that of the conformation tensor.

The simple idea must be checked by the applications to a

number of nonlinear viscoelastic flows.
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