• 제목/요약/키워드: taylor polynomial

검색결과 33건 처리시간 0.021초

일반화된 유한차분법을 이용한 균열해석 (A Generalized Finite Difference Method for Crack Analysis)

  • 윤영철;김동조;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.501-506
    • /
    • 2007
  • A generalized finite difference method for solving solid mechanics problems such as elasticity and crack problems is presented. The method is constructed in framework of Taylor polynomial based on the Moving Least Squares method and collocation scheme based on the diffuse derivative approximation. The governing equations are discretized into the difference equations and the nodal solutions are obtained by solving the system of equations. Numerical examples successfully demonstrate the robustness and efficiency of the proposed method.

  • PDF

CMOS그라운드 연결망에서 발생하는 최대 동시 스위칭 잡음의 테일러 급수 모형의 분석 (Taylor′s Series Model Analysis of Maximum Simultaneous Switching Noise for Ground Interconnection Networks in CMOS Systems)

  • 임경택;조태호;백종흠;김석윤
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(2)
    • /
    • pp.129-132
    • /
    • 2001
  • This paper presents an efficient method to estimate the maximum SSN (simultaneous switching noise) for ground interconnection networks in CMOS systems using Taylor's series and analyzes the truncation error that has occurred in Taylor's series approximation. We assume that the curve form of noise voltage on ground interconnection networks is linear and derive a polynomial expression to estimate the maximum value of SSN using $\alpha$-power MOS model. The maximum relative error due to the truncation is shown to be under 1.87% through simulations when we approximate the noise expression in the 3rd-order polynomial.

  • PDF

이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화 (Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem)

  • 윤영철;김효진;김동조;윙 캠 리우;테드 벨리치코;이상호
    • 한국전산구조공학회논문집
    • /
    • 제20권4호
    • /
    • pp.493-499
    • /
    • 2007
  • 본 연구에서는 미분 가능한 함수가 Taylor 전개로 표현되고 그 계수들은 주어진 함수와 미분에 대한 근사값을 제공할 수 있다는 점에 착안하여 m차 Taylor 다항식을 구성하고 이동최소제곱법을 이용하여 그 계수들을 구했다. 계산된 근사함수와 미분을 콜로케이션 개념을 바탕으로 균열 문제를 포함하는 고체문제에 대한 지배 미분방정식에 적용하여 차분식 형태의 이산화된 계방정식을 구성하였다. 본 연구의 해석기법은 격자망(grid)에 의존적이고 근사함수가 없는 유한차분법과 형상함수의 미분과 약형식의 적분산정, 필수경계조건 처리가 어려운 Galerkin법 기반의 무요소법의 단점을 효과적으로 극복한 새로운 수치기법이다.

B-spline 곡선을 power 기저형태의 구간별 다항식으로 바꾸는 Direct Expansion 알고리듬 (A Direct Expansion Algorithm for Transforming B-spline Curve into a Piecewise Polynomial Curve in a Power Form.)

  • 김덕수;류중현;이현찬;신하용;장태범
    • 한국CDE학회논문집
    • /
    • 제5권3호
    • /
    • pp.276-284
    • /
    • 2000
  • Usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in a power form is done by either a knot refinement followed by basis conversions or applying a Taylor expansion on the B-spline curve for each knot span. Presented in this paper is a new algorithm, called a direct expansion algorithm, for the problem. The algorithm first locates the coefficients of all the linear terms that make up the basis functions in a knot span, and then the algorithm directly obtains the power form representation of basis functions by expanding the summation of products of appropriate linear terms. Then, a polynomial segment of a knot span can be easily obtained by the summation of products of the basis functions within the knot span with corresponding control points. Repeating this operation for each knot span, all of the polynomials of the B-spline curve can be transformed into a power form. The algorithm has been applied to both static and dynamic curves. It turns out that the proposed algorithm outperforms the existing algorithms for the conversion for both types of curves. Especially, the proposed algorithm shows significantly fast performance for the dynamic curves.

  • PDF

테일러급수의 이해에 대한 연구 (A study on understanding of Taylor series)

  • 오혜영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제31권1호
    • /
    • pp.71-84
    • /
    • 2017
  • 테일러급수는 대학 전공 수학의 여러 개념을 포함하는 복잡한 구조를 가지고 있다. 이 주제는 미적분학, 해석학, 복소해석학 등의 수학뿐만 아니라 물리학, 공학 등 다른 학문에서도 유용성과 응용성을 가진 강력한 도구이다. 그러나 학생들은 이 주제의 수학적 구조를 제대로 이해하는데 어려움을 느낀다. 이에 본 연구에서는 어떻게 학생들이 테일러급수 수렴을 이해하는지를 알기 위해서 학생들의 수학적 특징을 세 유형으로 분류한다. 그 후에 테일러급수 수렴의 구조적 상(image)을 이용해서 테일러급수 수렴에 대한 이해도를 분석하고 이에 대한 결과를 제시하고자 한다.

천정형 크레인의 흔들림 억제제어에 관한 SOS 접근법 (Anti-Swing Control of Overhead Crane System using Sum of Squares Method)

  • 홍진현;김철중;좌동경
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.407-413
    • /
    • 2013
  • This paper proposes anti-swing control of overhead crane system using sum of squares method. The dynamic equations of overhead crane include nonlinear terms, which are transformed into polynomials by using Taylor series expansion. Therefore the dynamic equation of overhead crane can be changed to the system of polynomial equation. On the basis of polynomial dynamics of crane system, we propose the Sum of Squares (SOS) conditions considering the input constraints. In addition, control gains are obtained by numerical tool which is called by SOSTOOL. The effectiveness of the proposed method is demonstrated by numerical simulation.

탄성균열 해석을 위한 이동최소제곱 유한차분법의 내적확장 (Intrinsic Enrichment of Moving Least Squares Finite Difference Method for Solving Elastic Crack Problems)

  • 윤영철;이상호
    • 대한토목학회논문집
    • /
    • 제29권5A호
    • /
    • pp.457-465
    • /
    • 2009
  • 본 연구는 균열선단에서 응력특이성을 갖는 탄성균열문제를 해석하기 위한 이동최소제곱 유한차분법을 제시한다. 응력특이성을 유발하는 균열선단 주변장을 모형화하기 위해 근사식에 선단주변함수를 내재적으로 도입하여 이동최소제곱 근사의 틀을 그대로 유지하면서 실제 미분계산을 거의 하지 않고 미분근사를 할 수 있는 이동최소제곱 Taylor 다항식 근사의 장점을 살렸다. 균열문제 정식화시 시간소모적인 적분과정이 필요한 약정식화 대신 해석영역에 배치된 절점에서 지배 미분방정식에 대한 차분식을 직접 구성하는 강정식화를 적용하여 계산 효율성을 향상시켰다. 균열문제 해석을 통해 내적확장된 이동최소제곱 유한차분법이 응력 특이성을 내포한 선단주변 변위장을 정확히 묘사할 수 있을 뿐만 아니라 응력확대계수를 정확히 계산 할 수 있음을 보였다.

Comparison of Matrix Exponential Methods for Fuel Burnup Calculations

  • Oh, Hyung-Suk;Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.172-181
    • /
    • 1999
  • Series expansion methods to compute the exponential of a matrix have been compared by applying them to fuel depletion calculations. Specifically, Taylor, Pade, Chebyshev, and rational Chebyshev approximations have been investigated by approximating the exponentials of bum matrices by truncated series of each method with the scaling and squaring algorithm. The accuracy and efficiency of these methods have been tested by performing various numerical tests using one thermal reactor and two fast reactor depletion problems. The results indicate that all the four series methods are accurate enough to be used for fuel depletion calculations although the rational Chebyshev approximation is relatively less accurate. They also show that the rational approximations are more efficient than the polynomial approximations. Considering the computational accuracy and efficiency, the Pade approximation appears to be better than the other methods. Its accuracy is better than the rational Chebyshev approximation, while being comparable to the polynomial approximations. On the other hand, its efficiency is better than the polynomial approximations and is similar to the rational Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than the polynomial approximations by a factor of ∼ 1.7.

  • PDF

ENERGY DECAY FOR A VISCOELASTIC EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING INVOLVING INFINITE MEMORY AND NONLINEAR TIME-VARYING DELAY TERMS IN DYNAMICAL BOUNDARY

  • Soufiane Benkouider;Abita Rahmoune
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.943-966
    • /
    • 2023
  • In this paper, we study the initial-boundary value problem for viscoelastic wave equations of Kirchhoff type with Balakrishnan-Taylor damping terms in the presence of the infinite memory and external time-varying delay. For a certain class of relaxation functions and certain initial data, we prove that the decay rate of the solution energy is similar to that of relaxation function which is not necessarily of exponential or polynomial type. Also, we show another stability with g satisfying some general growth at infinity.

MLS 차분법을 이용한 고체역학 문제의 동적해석 (Dynamic Algorithm for Solid Problems using MLS Difference Method)

  • 윤영철;김경환;이상호
    • 한국전산구조공학회논문집
    • /
    • 제25권2호
    • /
    • pp.139-148
    • /
    • 2012
  • MLS(Moving Least Squares) 차분법은 무요소법의 이동최소제곱법과 Taylor 전개를 이용하여 요소망의 제약 및 수치 적분이 없이 절점만을 이용하여 미분방정식을 수치해석할 수 있는 방법이다. 본 연구에서는 고체역학 문제의 동적해석을 위하여 MLS 차분법의 시간이력해석 알고리즘을 제시한다. 개발된 알고리즘은 Newmark 방법으로 시간적분을 하였으며, 강형식을 그대로 이산화하여 해석을 수행했다. 이동최소제곱법을 이용해 Taylor 전개식을 근사하여 실제 미분계산없이 미분근사식을 얻기 때문에 고차까지 Taylor 다항식의 차수를 증가하는 것이 용이하다. 1차원과 2차원 수치예제들을 통하여 동적해석을 위한 MLS 차분법의 정확성과 효율성을 검증하였다. 수치결과들이 정확해에 잘 수렴하였으며, 유한요소법(FEM)의 해석결과와 비교하여 떨림현상(oscillation) 및 주기성(periodicity) 오차에 대해 보다 안정적인 모습을 보였다.