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ENERGY DECAY FOR A VISCOELASTIC EQUATION WITH

BALAKRISHNAN-TAYLOR DAMPING INVOLVING

INFINITE MEMORY AND NONLINEAR TIME-VARYING

DELAY TERMS IN DYNAMICAL BOUNDARY

Soufiane Benkouider and Abita Rahmoune

Abstract. In this paper, we study the initial-boundary value prob-

lem for viscoelastic wave equations of Kirchhoff type with Balakrishnan–

Taylor damping terms in the presence of the infinite memory and external
time-varying delay. For a certain class of relaxation functions and certain

initial data, we prove that the decay rate of the solution energy is similar

to that of relaxation function which is not necessarily of exponential or
polynomial type. Also, we show another stability with g satisfying some

general growth at infinity.

1. Introduction

Let Ω be a bounded domain of Rn (n ≥ 1) with sufficiently smooth boundary
Γ = Γ0 ∪ Γ1 of class C2. Her Γ0 and Γ1 are closed and disjoint, with Γ0 ̸= ∅, ν
be the outward normal to Γ. In this paper we investigate general decay results
of the energy for a viscoelastic problem with Balakrishnan-Taylor damping,
infinite memory and nonlinear time varying delay terms in dynamical boundary
conditions:

utt −
(
a+ b∥∇u∥2 + σ

∫
Ω

∇u∇utdx
)
∆u(1)

+

∫ +∞

0

g(s)∆u(t− s)ds+ f(u) = 0 in Ω× (0,∞),

u(x, t) = 0 on Γ1 × (0,∞),

∂u

∂ν
(x, t)−

∫ +∞

0

g (s)
∂

∂ν
u (x, t− s) ds

+ µ1h1 (ut (x, t)) + µ2h2 (ut (x, t− τ (t))) = 0 on Γ0 × (0,+∞) ,
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u(x,−t) = u0(x, t) in Ω× (0,∞),

ut(x, 0) = u1(x) in Ω,

ut(x, t) = j0(x, t) on Γ0 × (−τ (0) , 0),
where a, b, σ are fixed positive constants, µ1 > 0, µ2 ̸= 0, g and f are given func-
tions, τ(t) > 0 represents the time delay. Problem (1), from the physical point
of view, with g = 0 and µ1 = µ2 = 0, is the model with Balakrishnan-Taylor
damping (σ > 0) which has been described initially by Balakrishnan and Tay-
lor [1], and treated by Bass and Zes [2]. It is well known in the literature that
it is related to the panel flutter equation (the “spillover” problem) and arises
from a wind tunnel experiment at supersonic speeds. To a certain extent it has
been studied by many authors such as [16, 21] and in some references therein.
When µ1 = µ2 = 0 in (1) with finite memory, several authors have studied
the existence of the solutions and stability of the corresponding energy. For
example, Tatar and Zarai [24,25] showed polynomial/exponential decay results
under the classical condition of g. Recently, Park [21] proved arbitrary decay
rates without imposing the usual known relations g′ (t) ≤ −ζ (t) g (t). Consid-
ering the infinite memory, and time-varying delay term µ2h2 (ut (x, t− τ (t)))
in boundary feedback, the problem is different from those of existing literature.
Time delays arise in many physical, chemical, biological, thermal and economi-
cal phenomena because these phenomena depend not only on the present state
but also on the past history of the system in a more complicated way (see, for
example, [5, 9, 14]). In recent years, the systems with time delay effects have
become an active area of research, see for example [17, 22] and the references
therein. In [4], the authors showed that a small delay in boundary control is
a source of instability. To stabilize a hyperbolic system involving input delay,
additional conditions or control terms have been used. For instance, consider
a wave equation with a delay of the form

(2) utt(x, t)−∆u(x, t) + µ0σ(t)h1 (ut(x, t)) + µ1σ(t)h2 (ut(x, t− τ(t))) = 0.

Nicaise and Pignotti [18] proved that the energy of the problem is exponentially
stable when σ(t) = 1, µ0, µ1 > 0, τ(t) = τ (constant), and h1(v) = h2(v) = v.
On the other hand, the case of time-varying delay in the wave equation in 1-
dimensional space has been studied recently by Nicaise et al. In [20] the authors
proved an exponential stability result under the condition 0 < µ2 <

√
1− dµ1,

where the function τ(t) satisfies τ ′(t) ≤ d,∀t > 0 for the constant d < 1. Several
authors studied a nonlinear viscoelastic wave equation with strong damping,
time-varying delay, and dynamical boundary conditions, in which they proved
a general decay result for the energy, from which the usual exponential and
polynomial decay rates only occur in particular cases. For the related problems,
we also refer to [3,12]. For Balakrishnan-Taylor problem with delay, Jum-Ran
Kang et al. [11] studied the following equations with Dirichlet boundary value,

utt −
(
a+ b∥∇u∥2 + σ

∫
Ω

∇u∇utdx
)
∆u(3)
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+

∫ t

0

g(t− s)∆u(s)ds+ µ1h1 (ut (x, t)) + µ2h2 (ut (x, t− τ (t))) = 0.

By dropping the restriction µ2 > 0, the authors investigate the general decay
rates of energy for Problem (3) by establishing suitable Lyapunov functionals
that are equivalent to the corresponding energy, and they improve those existing
results. Jianghao Hao in [10] examined the following system

utt −
(
a+ b∥∇u∥2 + σ

∫
Ω

∇u∇utdx
)
∆u(4)

+

∫ t

0

g(t− s)∆u(s)ds+ µ0ut (x, t) + µ1ut (x, t− τ (t)) + f (u) = 0,

and they established general decay estimates of the energy to the solution.
Guesmia [7] studied the following infinite memory problem

(5) utt(t) +Au(t) +

∫ ∞

0

g(s)Bu(t− s)ds = 0, ∀t > 0,

and established a general decay estimate of the energy with g satisfying the
following general growth at infinity∫ +∞

0

g(s)

G−1 (−g′(s))
ds+ sup

x∈R+

g(s)

G−1 (−g′(s))
< +∞

with G : R+ → R+ is an increasing strictly convex function of class C1 (R+) ∩
C2((0,∞)) and G(0) = G′(0) = 0 and limt→+∞G′(t) = +∞. In [8], the author
proved the exponential stability of (5), in the case A = B and in the presence
of delay term µut(t−τ), µ ∈ R∗, for problems of a past history see also [13,15].
Recently, Pignotti [23] considered the following problem

utt +Au(t, x)−
∫ +∞

0

µ(s)∆u(t− s, x)ds+ b(t)ut(t− τ, x) = 0,

and he established a general decay estimate. To the best of our knowledge,
this is the first result dealing with equation (1) subject to the interaction of the
infinite memory term with Balakrishnan–Taylor damping and external time-
varying delay type and presenting general decay. Motivated by these results,
and by constructing Lyapunov functionals which are equivalent to the corre-
sponding energy, we will investigate some general decay rates of energy for
Problem (1). The first fundamental stability result is given without imposing
any restrictive growth assumption on the function g and damping term, and
the second result is given with a relation between the damping term and relax-
ation function. This paper is organized as follows. In Section 2, we give some
assumptions that will be needed for our work and state the main results. We
establish the two general decay results of the energy in Section 3.
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2. Preliminaries and main results

In this section, we present some material that we shall use in order to present
our results. We use the notation

(u, v) =

∫
Ω

u(x, t)v(x, t)dx and (u, v)Γ0
=

∫
Γ0

u (x) v (x) dΓ,

and we mean by ∥ · ∥2 the L2(Ω) norm, and by ∥ · ∥Γ0
the L2 (Γ0) norm. Also

we denote by

H1
Γ1

(Ω) =
{
u ∈ H1(Ω) : u = 0 on Γ1

}
,

the closed subspace of H1(Ω) equipped with the norm equivalent to the usual
norm in H1(Ω). The Poincaré inequality holds on H1

Γ1
(Ω), i.e., there exits a

constant C∗ such that:

∀u ∈ H1
Γ1

(Ω) , ∥u(t)∥2 ≤ C∗∥∇u(t)∥2,

and there exists a constant C̄∗ > 0 such that

∥u∥Γ0
≤ C̄∗∥∇u∥2 for all u ∈ H1

Γ1
(Ω) .

For studying Problem (1), we will need the following assumptions.

(H1) Hypotheses on g: g : R+ → R+ is a bounded C1 function satis-
fying

(6) g(0) > 0, l0 =

∫ ∞

0

g(s)ds < a.

(H2) Hypotheses on f : Concerning the source term f(u), we assume
that

f(0) = 0, |f(u)− f(v)| ≤ C (1 + |u|p + |v|p) |u− v|,
where C is a constant, and p satisfies{

p > 0, 1 ≤ n ≤ 4,

0 < p < 4
n−4 , n ≥ 5.

We denote F (z) =
∫ z

0
f(s)ds and assume that

0 ≤ F (s) ≤ sf(s), s ∈ R.

(H3) Hypotheses on h1, h2: h1 : R → R is a non-decreasing function
of the class C(R) such that there exist positive constants r < 1, α1, α2

satisfying

(7) α1|s| ≤ |h1(s)| ≤ α2|s| for |s| ≥ r.

Moreover, assume that there exists a convex increasing function H1 :
R+ → R+ of class C1 (R+) ∩ C2((0,∞)) satisfying

(8) H1(0) = 0,

(9) H1 is linear on (0, r], or H ′
1(0) = 0 and H ′′

1 (t) > 0 on (0, r],
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(10) h21(s) ≤ H−1
1 (sh1(s)) for |s| ≤ r,

h2 : R → R is an odd non-decreasing function of the class C1(R) such
that there exist positive constants αi, i = 3, 4, 5, satisfying

(11) |h′2(s)| ≤ α3 for s ∈ R,

(12) α4sh2(s) ≤ H2(s) ≤ α5sh1(s) for s ∈ R,
where H2(s) =

∫ s

0
h2(t)dt.

(H4) Hypotheses on τ (·): For the time-varying delay τ , we assume
that τ ∈ W 2,∞([0, T ]), ∀T > 0 and there exist positive constants τ0, τ1
and d satisfying

(13) 0 < τ0 ≤ τ (t) ≤ τ1, τ
′ (t) ≤ d < 1, ∀t > 0.

(H5) Hypotheses on µ1, µ2: The weight of dissipation and the delay
satisfy

(14) 0 < |µ2| <
α4(1− d)

α5 (1− α4d)
µ1.

In order to deal with the delay feedback term, motivated by the cited works,
we introduce the following new dependent variable η, for studying Problem (1):

ηt(x, s) = z(x, s) = u(x, t)− u(x, t− s), s, t ∈ R+.

Moreover, as in [19], we define

z(x, ρ, t) := z(ρ, t) = ut(x, t− ρτ(t)), (x, ρ, t) ∈ Γ0 × (0, 1)× (0,∞).

Therefore, Problem (1) takes the form

utt−
(
a−l0+b∥∇u∥2+σ

∫
Ω

∇u∇utdx
)
∆u(15)

−
∫ +∞

0

g(s)∆ηt(s)ds+ f(u) = 0 in Ω× (0,∞),

u(x, t) = ηt(x, s) = 0 on Γ1 × (0,∞),

(a−l0)
∂u

∂ν
(x, t)+

∫ t

0

g (t−s) ∂

∂ν
ηt (x, s) ds

+ µ1h1 (ut (x, t)) + µ2h2 (z (x, 1, t)) = 0 on Γ0 × (0,+∞) ,

τ(t)zt + (1− τ ′(t)ρ)zρ = 0 in Γ× (0, 1)× (0,∞),

ηtt(x, s) + ηts(x, s) = ut(x, t) in Ω× (0,∞)× (0,∞),

and

z(x, 0, t) = ut(x, t) in Ω× (0,∞),(16)

z(x, ρ, 0) = z0 (x, ρ) = g0(x,−ρτ(0)) in Ω× (−τ (0) , 0),
u(x,−t) = u0(x, t),

η0(x, s) = η0(x, s) = u0(0)− u0(s) x ∈ Ω, t, s ∈ (0,∞),
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ut(x, 0) = u1(x) in Ω.

Let us recall the original Jensen’s inequality which plays an essential role in
investigating the decay effect for solutions as the following lemma shows.

Lemma 2.1 (Jensen’s Inequality). If H is a convex function on [a, b], h : D →
[a, b] and q are integrable functions on D, q(x) ≥ 0 and

∫
D
q(x)dx = Q > 0,

then

H

(
1

Q

∫
D

h(x)q(x)dx

)
≤ 1

Q

∫
D

H(h(x))q(x)dx.

2.1. The well-posedness of Problem (1)

In this section, we give the existence and uniqueness results for Problem (15)
using the semigroup theory. Introducing the vector function Φ = (u, ut, η

t, w)T ,
Problem (15) can be rewritten

(17)

{
Φ′(t)−AΦ(t) = 0, t > 0,

Φ(0) = Φ0 = (u0, u1, η0, w0)
T
,

where the operator A is defined by

(18) A


u
φ
v
z

 =


φ(

a− l0 + b∥∇u∥2 + σ
∫
Ω
∇u∇utdx

)
∆u+

∫ +∞
0

g(s)∆v(s)ds− f(u)
−vs + φ

− (1−τ ′(t)ρ)
τ(t) zρ


with domain

D (A)(19)

=


(u, φ, v, z) ∈ H1

Γ0
(Ω)× L2(Ω)× L2

g((0,+∞), H1
Γ0

(Ω))× L2
(
(0, 1), L2(Ω)

)
:

u ∈ H1
Γ0

(Ω) , φ ∈ H1
Γ0

(Ω) , zρ ∈ L2
(
(0, 1), L2(Ω)

)
,

v ∈ L2((0,+∞), H1
Γ0

(Ω)), vs ∈ L2((0,+∞), H1
Γ0

(Ω)), z (0) = φ (x) , v (0) = 0,
∂u
∂ν +

∫ t

0
g (s) γ1vsds = −µ1h1 (φ)− µ2h2 (z)

,
where γ1 : H1(Ω) → H−1/2(Γ) is the Neumann trace map, and L2

g((0,+∞),

H1
Γ0

(Ω)) denotes the Hilbert space H1
Γ0

(Ω)-valued functions on R+ endowed
with the inner product

[κ, ψ]L2
g((0,+∞),H1

Γ0
(Ω)) =

∫
Ω

∫ +∞

0

g(s)∇κ(s)∇ψ(s)dsdx.

Let

H =H1
Γ0

(Ω)× L2(Ω)× L2
g((0,+∞), H1

Γ0
(Ω))× L2

(
(0, 1), L2(Ω)

)
be the Hilbert space equipped with the following inner product

(Φ, Φ̃)H = (a− l0)

∫
Ω

∇u∇ũdx+

∫
Ω

∫ +∞

0

g(s)∇v∇ṽdsdx(20)

+
ξ

2

∫
Γ0

∫ t

t−τ(t)

eλ(ρ−t)zz̃dρdΓ,
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where ζ is a positive constant such that

(21)
µ2√
1− d

< ξ < 2µ1 −
µ2√
1− d

.

By using the approaches from [19] with the ones from [6], we can prove that
the operator A generates a strongly continuous semigroup on H, i.e., (for a
sufficiently large constant λ > 0, the operator (A− λI) is dissipative), and the
following well-posedness theorem holds.

Theorem 2.2. Assume that (6) and (H1)-(H5) hold. Then for the given Φ0 ∈
H, there exists a unique weak solution Φ ∈ C (R+,H) of Problem (1). Moreover,
if Φ0 ∈ D (A), then Φ ∈ C (R+,H) ∩ C (R+, D (A)).

3. Main general theorems

The purpose of this paper is to give two general theorems concerning to the
asymptotic stability of solutions for Problem (1). First, we suppose that the
kernel function g satisfies

(22) γ (t) > 0, g′ (t) ≤ −γ (t) g (t) for all t ≥ 0,

where γ is nonincreasing differentiable function γ : R+ → R+. Then we have
the first general theorem:

Theorem 3.1. Under the conditions of Theorem 2.2 and (22) holds, there
exist positive constants ω, κ, t0, and ϵ0 such that the energy for Problem (15)
satisfies

(23) E(t) ≤ κH−1

{
ω

(
1 +

∫ t

t0

γ(s)ds

)}
for t ≥ t0

with

(24) H(t) =

∫ 1

t

1

H0(s)
ds

and

(25) H0(t) =

{
t if H1 is linear on [0, r],

tH ′
1 (ϵ0t) if H ′

1(0) = 0 and H ′′
1 (t) > 0 on (0, r].

Second, we suppose that there exists a strictly convex and increasing function
G : R+ → R+ of class C1 (R+) ∩ C2([0,∞)) satisfying G(0) = G′(0) = 0 and
limt→+∞G′(t) = +∞ such that

(26)

∫ +∞

0

g(s)

G−1 (−g′(s))
ds+ sup

s∈R+

g(s)

G−1 (−g′(s))
< +∞.

Then we have the second general theorem:
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Theorem 3.2. Let U be the solution of (15). Assume that (21) and (26) hold.
Then, there exist positive constants σ, σ1, σ2, ϵ0 and δ5 such that the solution
energy of (1) satisfies

(27) E(t) ≤ σL −1
1 (σ1t+ σ2) for all t ≥ 0,

where

L1(t) =

∫ 1

t

ds

sH ′
1 (ϵ0s)G

′ (δ5s)
.

3.1. Technical lemmas

In this subsection we present for rather technical lemmas that we need to
complete the proof of Theorem 3.1 and Theorem 3.2. Let us define the modified
energy functional E associated with Problem (15) by

E(t)(28)

=
1

2
∥ut(t)∥22 +

1

2
(a− l0) ∥∇u∥22 +

∫
Ω

F (u) dx

+
ξ

2

∫
Γ0

∫ t

t−τ(t)

eλ(s−t)H2 (z(x, 0, s)) dsdΓ +
1

2

(
g ◦ ∇ηt

)
(t) ,

where (
g ◦ ∇ηt

)
(t) =

∫ +∞

0

∫
Ω

g (s)
∣∣∇ηt (s)−∇ηt (t)

∣∣2 dxds.
The following three lemmas are essential to prove the main result given in
Theorem 2.2.

Lemma 3.3. Let (u, z) be the solution of (15). Then, for some two positive
constants β1 and β2, we have

E′(t)(29)

≤ − β1

∫
Γ0

h1 (ut)utdΓ− β2

∫
Γ0

h2(z(1, t))z(1, t)dΓ

− λξ

2

∫
Γ0

∫ t

t−τ(t)

eλ(s−t)H2 (ut(x, s)) dsdΓ +
1

2

(
g′ ◦ ∇ηt

)
(t)

− 1

2
g (t) ∥∇u(t)∥22 .

Proof. Multiplying the equation (15)1 by ut, integrating over Ω, and multiply-
ing the equation (15)4 by ζze−λτ(t)ρ, and integrating the result over (0, 1)×Γ0

with respect to ρ and x using integration by parts and adding them up we
obtain

E′(t)(30)

= − σ

(
1

2

d

dt
∥∇u(t)∥22

)2

− µ1

∫
Γ0

h1 (ut)utdΓ− µ2

∫
Γ0

h2 (z(1, t))utdx



TIME-VARYING DELAY TERMS IN DYNAMICAL BOUNDARY CONDITIONS 951

− λξ

2

∫
Γ0

∫ t

t−τ(t)

eλ(s−t)H2 (ut(x, s)) dsdΓ +
ξ

2

∫
Γ0

H2 (ut(x, t)) dΓ

− ξ

2

∫
Γ0

e−λτ(t) (1− τ ′ (t))H2 (ut(x, t− τ (t))) dΓ

+
1

2

(
g′ ◦ ∇ηt

)
(t)− 1

2
∥∇u(t)∥22 g (t) .

From (12) and (13), using z(1, t) = ut(t− τ(t)), we see that

− ξ

2

∫
Γ0

e−λτ(t) (1−τ ′ (t))H2 (ut(x, t−τ (t))) dΓ+
ξ

2

∫
Γ0

H2 (ut(x, t)) dΓ(31)

≤ − ξα4

2
e−λτ1 (1− τ ′(t))

∫
Γ0

h2(z(x, 1, t))z(x, 1, t)dΓ

+
ξα5

2

∫
Γ0

h1 (ut(x, t))ut(x, t)dΓ

≤ − ξα4

2
e−λτ1(1− d)

∫
Γ0

h2(z(1, t))z(1, t)dΓ +
ξα5

2

∫
Γ0

h1 (ut)utdΓ.

To estimate the second term in the right hand side of (30), let G∗ be the
conjugate function of the convex function G defined by

(32) G∗(s) = sup
t≥0

(st−G(t)).

Then G∗ is a Legendre transform of G which is given by:

(33) G∗(s) = s (G′)
−1

(s)−G
(
(G′)

−1
(s)
)

∀s ≥ 0,

and satisfies the inequality

(34) st ≤ G∗(s) +G(t) for s, t ≥ 0.

Taking the definition of H2 into account and (33), we get

(35) H∗
2 (s) = sh−1

2 (s)−H2

(
h−1
2 (s)

)
for s ≥ 0.

Using (35), we can easily check that

− µ2

∫
Γ0

h2 (z(1, t))utdΓ(36)

≤ |µ2|
∫
Γ0

(h2(z(x, 1, t))z(x, 1, t)−H2(z(x, 1, t)) +H2 (ut(x, t))) dΓ,

which, together with (12), leads to

− µ2

∫
Γ0

h2 (z(1, t))utdΓ(37)

≤ |µ2| (1− α4)

∫
Γ0

h2(z(1, t))z(1, t)dΓ + |µ2|α5

∫
Γ0

h1 (ut)utdΓ.
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Substituting (31) and (37) into (30) yields

E′(t) ≤ −
(
µ1 −

ξα5

2
− |µ2|α5

)∫
Γ0

h1 (ut)utdΓ

−
(
ξα4

2
e−λτ1(1− d)− |µ2| (1− α4)

)∫
Γ0

h2(z(1, t))z(1, t)dΓ

+
1

2

(
g′ ◦ ∇ηt

)
(t)− 1

2
∥∇u(t)∥22 g (t)

− λξ

2

∫
Γ0

∫ t

t−τ(t)

eλ(s−t)H2 (ut(x, s)) dsdΓ.

Putting β1 = µ1− ξα5

2 −|µ2|α5 > 0 and β2 = ξα4

2 e−λτ1(1−d)−|µ2| (1− α4) > 0,
we complete the proof of Lemma 3.3. □

Next, let us define the perturbed energy by

(38) L(t) =ME(t) + ϵΨ(t) + Φ(t) + E(t),

where M is a positive constant to be chosen later, and

Ψ(t) =

∫
Ω

ut(t)u(t)dx+
σ

4
∥∇u(t)∥42 ,

Φ(t) = −
∫
Ω

ut(t)

∫ +∞

0

g(s)ηt(s)dxds,

E(t) =
∫
Γ0

∫ t

t−τ(t)

e(s−t)H2 (ut(x, s)) dsdΓ.

The functional L is equivalent to the energy function E by the following lemma.

Lemma 3.4. For M > 0 large enough, there exist two positive constants C1

and C2 such that

C1E(t) ≤ L(t) ≤ C2E(t), t ≥ 0.

Proof. Integrating by parts using Young’s inequality and Poincare’s Theorem,
we have

|Ψ(t)| ≤ 1

2
∥ut∥2 +

1

2
C∗∥∇u∥2 +

σ

4
∥∇u(t)∥42

≤ 1

2
∥ut∥2 +

C∗

2l
(a− l0) ∥∇u∥2 +

σ

4
∥∇u(t)∥42 ≤ cE(t),

|Φ(t)| ≤ 1

2
∥ut∥2 +

1

2

(∫ +∞

0

g(s)∥u(t)− u(t− s)∥ds
)2

=
1

2
∥ut∥2 +

1

2

(∫ +∞

0

g(s)∥u(t)− u(t− s)∥ds
)2

≤ 1

2
∥ut∥2 +

a− l0
2

C∗
(
g ◦ ∇ηt

)
≤ cE(t)
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and

|E(t)| ≤ cE(t).

Choosing M > 0 large, we obtain

|L(t)−ME(t)| ≤ cE(t),

the proof of Lemma 3.4 is concluded. □

Lemma 3.5. There exist positive constants C3, C4, C5 and t0 > 0 such that

(39) L′(t) ≤ −C3E(t) + C4 ∥h1 (ut)∥2Γ0
+ C5(g ◦ ∇ηt)(t), t ≥ t0.

Proof. Using Problem (15), we have

ψ′(t)(40)

=

∫
Ω

uttudx+

∫
Ω

u2tdx+ σ ∥∇u(t)∥22
∫
Ω

∇u∇utdx

=

∫
Ω

((
a+ b∥∇u∥2 + σ

∫
Ω

∇u∇utdx
)
∆u−

∫ +∞

0

g(s)∆u(t− s)ds− f(u)

)
udx

+

∫
Γ0

{−µ1h1 (ut)− µ2h2 (ut(t− τ(t)))}udΓ +

∫
Ω

u2tdx

= − a ||∇u||22 − b ||∇u||42 +
∫
Ω

∫ +∞

0

g(s)∇u(t− s)ds∇u (t) dx

− µ1

∫
Γ0

h1 (ut)udΓ−
∫
Ω

f(u)udx− µ2

∫
Γ0

h2 (ut(t− τ(t)))udΓ

+

∫
Ω

u2tdx+

∫
Ω

∫ +∞

0

g (s)∇u (s) ds∇u (t) dx.

By using Hölder inequality and Young’s inequality, the second term on the
right-hand side of (40) is estimated as follows.∫

Ω

∫ +∞

0

g(s)∇u(t− s)ds∇udx(41)

≤
(∫

Ω

|∇u|2dx
) 1

2

(∫
Ω

∣∣∣∣∫ +∞

0

g(s)∇u(t− s)ds

∣∣∣∣2 dx
) 1

2

≤
(∫

Ω

|∇u|2dx
) 1

2
(∫

Ω

∫ +∞

0

g(s)ds

∫ +∞

0

g(s)|∇u(t− s)|2dsdx
) 1

2

≤
(∫

Ω

|∇u|2dx
∫ +∞

0

g(s)ds

) 1
2
(∫

Ω

∫ +∞

0

g(s)|∇u(t− s)|2dsdx
) 1

2

≤ 1

2

∫
Ω

|∇u|2dx
∫ +∞

0

g(s)ds+
1

2

∫
Ω

∫ +∞

0

g(s)|∇u(t− s)|2dsdx

≤ 1

2

∫
Ω

|∇u|2dx
∫ +∞

0

g(s)ds
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+
1

2

∫
Ω

∫ +∞

0

g(s)|∇u(t− s)−∇u(t) +∇u(t)|2dsdx.

We use Young’s inequality and (H1) to obtain for every η > 0

1

2

∫
Ω

∫ +∞

0

g(s)[∇u(t− s)−∇u(t) +∇u(t)]2dsdx(42)

≤ 1

2

∫
Ω

∫ +∞

0

g(s)
(
(∇u(t− s)−∇u(t))2 + 2|∇u(t− s)−∇u(t)∥∇u|+ |∇u|2

)
dsdx

=
1

2

∫
Ω

∫ +∞

0

g(s)|∇u(t− s)−∇u(t)|2dsdx+
1

2

∫
Ω

∫ +∞

0

g(s)|∇u|2dsdx

+

∫
Ω

∫ +∞

0

g(s) |∇u(t− s)−∇u(t)| |∇u|dsdx

≤ 1

2
(g ◦ ∇ηt)(t) + 1

2

∫ +∞

0

g(s)ds

∫
Ω

|∇u|2dx

+
η

2

∫ +∞

0

g(s)ds

∫
Ω

|∇u|2dx+
1

2η
(g ◦ ∇ηt)(t)

≤ 1

2
(1 + η)

∫ +∞

0

g(s)ds

∫
Ω

|∇u|2dx+
1

2

(
1 +

1

η

)
(g ◦ ∇ηt)(t)

≤ (1 + η)
(a− l0)

2

∫
Ω

|∇u|2dx+
1

2

(
1 +

1

η

)
(g ◦ ∇ηt)(t).

Combining (41) and (42) we get∫
Ω

∫ +∞

0

g(s)∇u(t− s)ds∇u (t) dx

≤ (a− l0)

2

∫
Ω

|∇u|2dx+
(a− l0)

2
(1 + η)

∫
Ω

|∇u|2dx+
1

2

(
1 +

1

η

)
(g ◦ ∇ηt)(t)

= (2 + η)
(a− l0)

2
∥∇u∥2 + 1

2

(
1 +

1

η

)
(g ◦ ∇ηt)(t).

By taking η = l0
a−l0

, we infer that

(43)

∫
Ω

∫ +∞

0

g(s)∇u(t− s)ds∇udx ≤
(
a− l0

2

)
∥∇u∥22 +

a

2l0
(g ◦ ∇ηt)(t).

For the third and forth terms, Young’s inequality gives

µ1

∫
Γ0

h1 (ut)udΓ + µ2

∫
Γ0

h2 (ut(t− τ(t)))udΓ(44)

≤ µ1

∫
Γ0

∣∣∣∣h1 (ut)∥∥∥∥u ∣∣∣∣dx+ µ2

∫
Γ0

∣∣∣∣h2 (ut(t− τ(t)))

∥∥∥∥u∣∣∣∣dx
≤ µ1∥u∥Γ0

∥h1 (ut)∥Γ0
+ µ2∥u∥Γ0

∥h2 (ut(t− τ(t))) ∥Γ0
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≤ η∥u∥2Γ0
+
µ2
1

4η
∥h1 (ut)∥2Γ0

+ η∥u∥2Γ0
+
µ2
2

4η
∥h2 (ut(t− τ(t)))∥2Γ0

≤ ηC2
∗∥∇u∥2 +

µ2
1

4η
∥h1 (ut)∥2Γ0

+ ηC2
∗∥∇u∥2 +

µ2
2

4η
∥h2 (ut(t− τ(t)))∥2Γ0

= 2ηC2
∗∥∇u∥2 +

µ2
1

4η
∥h1 (ut)∥2Γ0

+
µ2
2

4η
∥h2 (z(1, t))∥2Γ0

.

We use (H2) to obtain

−
∫
Ω

f(u)udx ≤ −
∫
Ω

F (u)dx.

Substituting these estimates into (40), we get

ψ′(t) ≤ − a ||∇u||22 − b ||∇u||42 +
2a− l0

2
∥∇u∥2 + a

2l0
(g ◦ ∇ηt)(t)(45)

+ ∥ut∥2 + 2ηC2
∗∥∇u∥2 +

µ2
1

4η
∥h1 (ut)∥2Γ0

+
µ2
2

4η
∥h2 (z(1, t))∥2Γ0

≤ ∥ut∥2 +
µ2
1

4η
∥h1 (ut)∥2Γ0

+
µ2
2

4η
∥h2 (z(1, t))∥2Γ0

+
a

2l0
(g ◦ ∇ηt)(t)

−
(
l0
2
− 2ηC2

∗

)
∥∇u∥2 −

∫
Ω

F (u)dx− b ||∇u||42 .

Besides

ϕ′(t)(46)

= − l0 ∥ut(t)∥2 −
∫ +∞

0

g′(s) (u(t)− u(t− s), ut(t)) ds

+
(
a+ b ||∇u||22

)∫ +∞

0

g(s)(∇u(t)−∇u(t− s),∇u(t))ds

+ σ (∇u(t),∇ut(t))
∫ +∞

0

g(s)(∇u(t)−∇u(t− s),∇u(t))ds

−
∫ +∞

0

g(s)

(
∇u(t)−∇u(t− s),

∫ +∞

0

g(s)∇u(t− s)ds

)
ds

+

∫ +∞

0

g(s)

∫
Γ0

(u(t)− u(t− s)) (µ1h1 (ut(t)) + µ2h2(z(1, t))) dΓds

:= I1 + l2 + I3 + I4 + I5 + I6.

We now going to estimate the Ij (1 ≤ j ≤ 6) terms in (46). Taking into account

that ∥∇u∥22 ≤ 2
a−l0

E(0), applying Young’s inequality and employing a usual
computation we have for every η > 0

|I2| ≤ η ∥ut(t)∥2 −
g(0)

4η
C∗
(
g′ ◦ ∇ηt

)
(t),
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|I3| ≤
(
a+ b ||∇u||22

)(
η∥∇u(t)∥2 + (a− l0)

4η
(g ◦ ∇ηt)(t)

)
≤ aη∥∇u(t)∥2 + bη ||∇u||42 +

{
a(a− l0)

4η
+
bE (0)

2η

}
(g ◦ ∇ηt)(t),

|I4| ≤
σ

2

∣∣∣∣ ddt ||∇u||22
∣∣∣∣ ∫ +∞

0

g(s) ∥∇u(t)∥ ∥∇u(t)−∇u(t− s)∥ ds

≤ ησ

2

(
||∇u||2

d

dt
||∇u||22

)2

+
σ (a− l0)

8η
(g ◦ ∇ηt)(t)

≤ ησE (0)

a− l0

(
d

dt
||∇u||22

)2

+
σ (a− l0)

8η
(g ◦ ∇ηt)(t),

|I5| =
∫
Ω

(∫ +∞

0

g(s)(∇u(t)−∇u(t− s))ds

)
(∫ +∞

0

g(s)(∇u(t)−∇u(t− s)−∇u(t))ds
)
dx

≤
∫
Ω

(∫ +∞

0

g(s)|∇u(t)−∇u(t− s)|ds
)

(∫ +∞

0

g(s)(|∇u(t)−∇u(t− s)|+ |∇u(t)|)ds
)
dx

≤ η

∫
Ω

(∫ +∞

0

g(s) (|∇u(t)−∇u(t− s)|+ |∇u(t)|) ds
)2

dx

+
1

4η

∫
Ω

(∫ +∞

0

g(s)|∇u(t)−∇u(t− s)|ds
)2

dx

≤
(
2η +

1

4η

)∫
Ω

(∫ +∞

0

g(s)|∇u(t)−∇u(t− s)|ds
)2

dx

+ 2η

∫
Ω

(∫ +∞

0

g(s)|∇u(t)|ds
)2

dx

≤
(
2η +

1

4η

)
(a− l0)(g ◦ ∇ηt)(t) + 2η(a− l0)

2∥∇u(t)∥2,

and

|I6| ≤ ηµ1 ∥h1 (ut(t))∥2Γ0
+ η |µ2| ∥h2 (z(1, t))∥2Γ0

+

{
µ1(1− l)C̄∗

4η
+

|µ2| (1− l)C̄∗

4η

}
(g ◦ ∇ηt)(t).

Plugging these estimates into (46), we get

ϕ′(t)(47)

≤ − (l0 − η) ∥ut∥2 −
g(0)

4η
C∗
(
g′ ◦ ∇ηt

)
(t)
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+ η
{
1 + 2(a− l0)

2
}
∥∇u(t)∥2 + ηb ∥∇u(t)∥4 + ησE (0)

a− l0

(
d

dt
||∇u||22

)2

+

{
a(a− l0)

4η
+

(
2η +

1

4η

)
(a− l0) +

σ (a− l0)

8η

+
bE (0)

2η
+

(µ1 + |µ2|) (a− l0)C̄∗

4η

}
(g ◦ ∇ηt)(t)

+ ηµ1 ∥h1 (ut(t))∥2Γ0
+ η |µ2| ∥h2 (z(1, t))∥2Γ0

.

Moreover, analogous to (31) we see that

E ′(t) ≤ − E(t)− α4e
−τ1(1− d)

∫
Γ0

h2(z(1, t))z(1, t)dΓ(48)

+ α5

∫
Γ0

h1 (ut)utdΓ.

From (38), (29), (45), (47) and (48), we have

L′(t)(49)

≤ − (l0 − η − ϵ) ∥ut∥2 +
(
M

2
− g(0)

4η
C∗

)(
g′ ◦ ∇ηt

)
(t)

+
[
η
{
a+ 2(a− l0)

2
}
− ϵ {a− (1 + η)(a− l)− 2η}

]
∥∇u(t)∥2

+ (η − ϵ) b ∥∇u(t)∥4 +
(
C +

ϵ

4η

)(
g ◦ ∇ηt

)
(t)

+

(
ηµ1 +

ϵµ2
1

4η
C̄∗

)
∥h1 (ut)∥2Γ0

−
(
Mσ

4
− ησE (0)

a− l0

)(
d

dt
||∇u||22

)2

−
∫
Ω

F (u)dx+

(
η |µ2|+

ϵµ2
2

4η
C̄∗

)
∥h2 (z(1, t))∥2Γ0

− (Mβ1 − α5)

∫
Γ0

h1 (ut)utdΓ

−
(
Mβ2 + α4(1− d)e−τ1

) ∫
Γ0

h2(z(1, t))z(1, t)dΓ− E(t).

Making use of (11), we find

∥h2 (z(1, t))∥2Γ0
≤ α3

∫
Γ0

h2(z(1, t))z(1, t)dΓ.

Owing to (13), it is seen that

−E(t) ≤ −τ(t)
∫
Γ0

∫ 1

0

e−τ(t)H2z(x, ρ, t)dρdΓ

≤ −e−τ1ρ

∫
Γ0

∫ 1

0

H2(z(x, ρ, t))dρdΓ.
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Applying these to (49), we get

L′(t) ≤ − (l0 − η − ϵ) ∥ut∥2 +
(
M

2
− g(0)

4η
C∗

)(
g′ ◦ ∇ηt

)
(t)

−
[
ϵ {(a− (1 + η)(a− l0)− 2η} − η

{
a+ 2 (a− l0)

2
}]

∥∇u(t)∥2

+

(
c+

ϵ

4η

)
(g ◦ ∇ηt)(t) +

(
ηµ1 +

ϵµ2
1

4η
C̄∗

)
∥h1 (ut(t))∥2Γ0

− (ϵ− η) b ∥∇u(t)∥4 − e−τ1ρ

∫
Γ0

∫ 1

0

H2(z(x, ρ, t))dρdΓ

− (Mβ1 − α5)

∫
Γ0

h1 (ut)utdΓ−
(
Mσ

4
− ησE (0)

a− l0

)(
d

dt
||∇u||22

)2

−
∫
Ω

F (u)dx−
{
Mβ2 + α4(1− d)e−τ1 − α3

(
η |µ2|+

ϵµ2
2

4η
C̄∗

)}
×
∫
Γ0

h2(z(1, t))z(1, t)dΓ for all t ≥ t0.

At this point, we choose ϵ > 0 small enough such that l0 − ϵ > 0, and then
we pick η > 0 sufficiently small such that

a− (1 + η)(a− l0)− 2η > 0,

ϵ {(a− (1 + η)(a− l0)− 2η} − η
{
a+ 2 (a− l0)

2
}
> 0,

l0 − ϵ− η > 0,

ϵ− η > 0.

Then we choose M > 0 so large such that

M

2
− g(0)

4η
C∗ > 0, Mβ1 − α5 > 0,

Mσ

4
− ησE (0)

a− l0
> 0,

Mβ2 + α4(1− d)e−τ1 − α3

(
η |µ2|+

ϵµ2
2

4η
C̄∗

)
> 0,

and we complete the proof. □

The following lemma plays an essential role in the proof of Theorem 3.1,
which can be proved by repeating the same arguments of Guesmia in [7].

Lemma 3.6. Suppose that (26) holds. Then, there exists β > 0 such that
∀δ0 > 0 and t ∈ R+, we have

(50) G′ (δ0E(t))
(
g ◦ ∇ηt

)
(t) ≤ −βE′(t) + βδ0G

′ (δ0E(t))E(t).

With this preparation, we are ready to prove Theorem 3.1 and Theorem 3.2.

Proof of Theorem 3.1. Multiplying (39) by γ(t), we have from (22) and (29)
that

γ(t)L′(t) ≤− C3γ(t)E(t)+C4γ(t) ∥h1 (ut(t))∥2Γ0
+C5γ(t)

(
g ◦ ∇ηt

)
(t)(51)
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≤− C3γ(t)E(t)+C4γ(t) ∥h1 (ut(t))∥2Γ0
−C5

(
g′ ◦ ∇ηt

)
(t)

≤− C3γ(t)E(t)+C4γ(t) ∥h1 (ut(t))∥2Γ0
− 2C5E

′(t) for t ≥ t0.

Now, we define

L(t) = γ(t)L(t) + 2C5E(t).

As γ is nonincreasing, we see from (51) that

L′(t) ≤ γ′(t)L(t)− C3γ(t)E(t) + C4γ(t) ∥h1 (ut(t))∥2Γ0
(52)

≤ −C3γ(t)E(t) + C4γ(t) ∥h1 (ut(t))∥2Γ0
for t ≥ t0.

In order to obtain desired results, we needed to estimate the term

γ(t) ∥h1 (ut(t))∥2Γ0

in (52). For this, let

Γ1
0 = {x ∈ Γ0 : |ut| > r|} and Γ2

0 = {x ∈ Γ0 : |ut| ≤ r} .

For δ1 = α2γ(0)
β1

, (7) and (29) imply that

(53) γ(t)

∫
Γ1
0

|h1 (ut)|2 dΓ ≤ α2γ(0)

∫
Γ1
0

uth1 (ut) dΓ ≤ −δ1E′(t).

Two cases are distinguished:
Case 1 : H1 is linear on [0, r]: According to (7) and (10), we can easily
check that there exist δ2 > 0 and δ3 > 0 such that

δ2|s| ≤ h1(s) |≤ δ3| s| for all |s| ≤ r,

and thus, for δ4 = α3γ(0)
β1

,

γ(t)

∫
Γ2
0

|h1 (ut)|2 dΓ ≤ δ3γ(t)

∫
Γ2
0

uth1 (ut) dΓ(54)

≤ δ3γ(0)

∫
Γ2
0

uth1 (ut) dΓ

≤ −δ4E′(t).

We substitute (53) and (54) into (52), we get

(55) (L(t) + δE(t))′ ≤ −C3γ(t)E(t) = −C7γ(t)H0

(
E(t)

E(0)

)
for t ≥ t0,

where δ = C4 (δ1 + δ4), C7 = C3E(0) and H0 is the function given in (25).
Case 2 : H1(0) = 0 and H ′′

1 > 0 on (0, r]: From (10) and (29) it follows
that

γ(t)

∫
Γ2
0

h1 (ut)
2
dΓ ≤ γ(t)

∫
Γ2
0

H−1
1 (uth1 (ut)) dΓ

≤ γ(t)
∣∣Γ2

0

∣∣H−1
1

(
1

|Γ2
0|

∫
Γ2
0

uth (ut) dΓ

)
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≤ γ(t)
∣∣Γ2

0

∣∣H−1
1

(
− E′(t)

β1 |Γ2
0|

)
,

where the Jensen’s inequality (2.1) for a concave function with D = Γ2
0, q(x) =

1, H = H1 and f(x) = H−1
1 (ut(x)h1 (ut(x))) in the second inequality is used.

Adapting this and (53) to (52), for δ̃ = C4δ1 and C6 = C4

∣∣Γ2
0

∣∣, we get

(56) (L(t) + δ̃E(t))′ ≤ −C3γ(t)E(t) + C6γ(t)H
−1
1

(
− E′(t)

β1 |Γ2
0|

)
.

For 0 < ϵ0 < r and c0 > 0, the inequalities (56), (34), together with (33), drive
to {

H ′
1

(
ϵ0
E(t)

E(0)

)
(L(t) + δ̃E(t)) + c0E(t)

}′

(57)

= ϵ0
E′(t)

E(0)
H ′′

1

(
ϵ0
E(t)

E(0)

)
(L(t) + δ̃E(t)) +H ′

1

(
ϵ0
E(t)

E(0)

)
(L(t) + δ̃E(t))′

+ c0E
′(t)

≤ − C3γ(t)H
′
1

(
ϵ0
E(t)

E(0)

)
E(t) + C6γ(t)H

′
1

(
ϵ0
E(t)

E(0)

)
H−1

1

(
− E′(t)

β1 |Γ2
0|

)
+ c0E

′(t)

≤ − C3γ(t)H
′
1

(
ϵ0
E(t)

E(0)

)
E(t) + C6γ(t)H

∗
1

(
H ′

1

(
ϵ0
E(t)

E(0)

))
− C6γ(t)

β1 |Γ2
0|
E′(t) + c0E

′(t)

= − C3γ(t)H
′
1

(
ϵ0
E(t)

E(0)

)
E(t) + C6γ(t)H

′
1

(
ϵ0
E(t)

E(0)

)
ϵ0
E(t)

E(0)

− C6γ(t)H1

(
ϵ0
E(t)

E(0)

)
− C6γ(t)

β1 |Γ2
0|
E′(t) + c0E

′(t)

≤ − (C3E(0)− C6ϵ0) γ(t)H
′
1

(
ϵ0
E(t)

E(0)

)
E(t)

E(0)
+

(
c0 −

C6γ(0)

β1 |Γ2
0|

)
E′(t).

Taking ϵ0 sufficiently small such that C3E(0)− C6ϵ0 > 0 and choosing c0 > 0

suitably such that c0 − C6γ(0)

β1|Γ2
0|
> 0, we obtain

{
H ′

1

(
ϵ0
E(t)

E(0)

)
(L(t) + δ̃E(t)) + c0E(t)

}′

(58)

≤ − C8γ(t)H
′
1

(
ϵ0
E(t)

E(0)

)
E(t)

E(0)

= − C8γ(t)H0

(
E(t)

E(0)

)
for t ≥ t0,
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where C8 = C3E(0)− C6ϵ0 is a positive constant. Now, let

˜L(t)(59)

=

{
L(t)+δE(t) if H1 is linear on [0, r],

H ′
1

(
ϵ0

E(t)
E(0)

)
(L(t)+δ̃E(t))+C0E(t) if H ′

1(0)=0 and H ′′
1 >0 on (0, r].

Then from (55) and (58), we see that

(60) ˜L′(t) ≤ −C9γ(t)H0

(
E(t)

E(0)

)
for t ≥ t0,

where C9 = min {C7, C8}. Since ˜L(t) is equivalent to E(t), there exist two
positive constants α3 and α4 such that

(61) α3
˜L(t) ≤ E(t) ≤ α4

˜L(t).

Let us define

(62) J (t) = α3

˜L(t)
E(0)

.

It is to be noted that

(63) J (t) ≤ E(t)

E(0)
< 1 (see (61)).

From (62), (60), (63) and the fact that H0 is increasing, we arrive at

(64) J ′(t) ≤ −α3C9

E(0)
γ(t)H0

(
E(t)

E(0)

)
≤ −C10γ(t)H0(ε(t)),

where C10 = α3C9

E(0) .

Integrating this over (t0, t) and using H ′(t) = − 1
H0(t)

(see (24)), we observe

that

H(J (t))−H (J (t0)) ≥ C10

∫ t

t0

γ (s) ds.

Thanks to the fact H−1 is decreasing, we infer

J (t) ≤ H−1

(
H(J (0)) + C10

∫ t

t0

γ(s)ds

)
for t ≥ t0.

This completes the proof from the equivalent relation of J and E. □

Proof of Theorem 3.2. The following two cases are distinguished:
Case 1 : H1 is linear on [0, r]: Then according to (7) and (10), we deduce
that

c1|s| ≤ |h1(s)| ≤ c2|s| for all s ∈ R.
Hence, by applying (29) the estimate (39) becomes

L′
1(t) ≤ −C3E(t)− C11E

′(t) + C5

(
g ◦ ∇ηt

)
(t), ∀t ≥ 0.
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C11 is a positive constant, which yields

(65) L′
2(t) ≤ −C3E(t) + C5

(
g ◦ ∇ηt

)
(t), ∀t ≥ 0,

where the function L2 = L1 + C11E is equivalent to E. Multiplying (65) by
G′ (δ0E(t)) and applying (50), we get

G′ (δ0E(t)) L′
2(t) ≤ − (C3 − C5βδ0)G

′ (δ0E(t))E(t)− C5βE
′(t), ∀t ≥ 0.

By taking δ0 small enough so that C12 = C3 − C5βδ0 > 0, we obtain

G′ (δ0E(t)) L′
2(t) + C5βE

′(t) ≤ −C12G
′ (δ0E(t))E(t), ∀t ≥ 0.

Let L3(t) = G′ (δ0E(t)) L2(t) + C5βE(t) and take into account the fact that
G′ (δ0E(t)) is nonincreasing. Then we reach at

L3 ∼ E and L′
3(t) ≤ −C13G

′ (δ1L3(t)) L3(t).

The last inequality leads to

(L (L3(t)))
′ ≥ C14,

where L (t) =
∫ 1

t
ds/ (sG′ (δ1s)) on (0, 1]. Integrating the previous inequality

on (0, t), by using the property of G, we infer

L3(t) ≤ L −1 (C15t+ C16) for all t ≥ 0,

where C15 and C16 are positive constants. Thanks to L3 ∼ E, we get the
desired result. In this case, we have H1(s) = cs.
Case 2 : H1 is nonlinear: Supposing in this case that H ′

1(0) = 0, H ′′
1 > 0

on [0, r], since H1 is convex and increasing, H−1
1 is concave and increasing, by

(28), the reversed Jensens inequality for concave function, and (10), it comes∫
Γ0

h21 (ut(t)) dΓ =

∫
Γ1
0

h21 (ut(t)) dΓ +

∫
Γ2
0

h21 (ut(t)) dΓ

≤
∫
Γ0

ut(t)h1 (ut(t)) dΓ +

∫
Γ2
0

H−1
1 (uth1 (ut)) dΓ

≤ −cE′(t) + cH−1
1

(
1

|Γ2
0|

∫
Γ2
0

uth1 (ut) dΓ

)
.

Then (39) is rewritten as

F ′(t) ≤ − C3E(t) + C5

(
g ◦ ∇ηt

)
(t)(66)

+ cC4H
−1
1

(
1

|Γ2
0|

∫
Γ2
0

u1h1 (ut) dΓ

)
∀t ≥ 0,

where F (t) = L1(t) + cC4E(t), which is equivalent to E. Now, for ϵ0 > 0 and
α > 0, let us denote

(67) F1(t) = H ′
1

(
ϵ0
E(t)

E(0)

)
F (t) + αE(t), ∀t ≥ t0.
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By (39) and the fact that E′ < 0, H ′
1 ≥ 0, H ′′

1 ≥ 0, we obtain F1 ∼ E, and

F ′
1(t) = ϵ0

E′(t)

E(0)
H ′′

1

(
ϵ0
E(t)

E(0)

)
F (t) +H ′

1

(
ϵ0
E(t)

E(0)

)′

F (t) + αE′(t)(68)

≤ − C3E(t)H ′
1

(
ϵ0
E(t)

E(0)

)
+ C5

(
g ◦ ∇ηt

)
(t)H1

(
ϵ0
E(t)

E(0)

)
+ cC4H

′
1

(
ϵ0
E(t)

E(0)

)
H−1

1

(
1

|Γ2
0|

∫
Γ2
0

uth1 (ut) dΓ

)
+ αE(t).

Since H∗
1 is the Legendre transform of the convex function H1 defined by (32),

the following inequality

(69) H∗
1 = s (H ′

1)
−1

(s)−H1

[
(H ′

1)
−1

(s)
]
≤ s (H ′

1)
−1

(s), ∀s ≥ 0,

holds. Using (28) and (68), (69) and (34) with s = H ′
1 (ϵ0(E(t)/E(0))), t =

H−1
1

(
1

|Γ2
0|
∫
Γ2
0
uth1 (ut) dΓ

)
and G = H1, we obtain

F ′
1(t) ≤ − (C3E(0)− cC4ϵ0)

E(t)

E(0)
H ′

1

(
ϵ0
E(t)

E(0)

)
− (cC4 − α)E′(t) + C5

(
g ◦ ∇ηt

)
(t)H ′

1

(
ϵ0
E(t)

E(0)

)
.

Hence, with a suitable choice of ϵ0 and α, we obtain

(70) F ′
1(t) ≤ −α6

E(t)

E(0)
H ′

1

(
ϵ0
E(t)

E(0)

)
+ C5

(
g ◦ ∇ηt

)
(t)H ′

1

(
ϵ0
E(t)

E(0)

)
.

Multiplying (70) by G′ (δa0E(t)) and taking (50) into consideration, we get for
all t ≥ 0

G (δ0E(t))F ′
1(t)

≤ − α6
E(t)

E(0)
H ′

1

(
ϵ0
E(t)

E(0)

)
G′ (δ0E(t))

− C5H
′
1

(
ϵ0
E(t)

E(0)

)
E′(t) + C5βδ0G

′ (δ0E(t))H ′
1

(
ϵ0
E(t)

E(0)

)
E(t)

≤− α6
E(t)

E(0)
H ′

1

(
ϵ0
E(t)

E(0)

)
G′ (δ0E(t))− α7E(t)

+ C5βδ0G
′ (δ0E(t))H ′

1

(
ϵ0
E(t)

E(0)

)
E(t).

Let F2(t) = G′(δ0E(t))F1(t) + α7E(t) and using the fact that G′′ > 0 and
E′ < 0, we determine two positive constants γ1, γ2 such that

(71) γ1F2(t) ≤ E(t) ≤ γ2F2(t)
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and

F ′
2(t) ≤ − (α6 − C5βδ5)

E(t)

E(0)
H ′

1

(
ϵ0
E(t)

E(0)

)
G′
(
δ5
E(t)

E(0)

)
,

where δ5 = δ0E(0). Taking δ0 small enough so that α3 = α6 − C5βδ5 > 0 in
the previous estimate, we get

F ′
2(t) ≤ −α8

E(t)

E(0)
H ′

1

(
ϵ0
E(t)

E(0)

)
G′
(
δ5
E(t)

E(0)

)
= −α8L2

(
E(t)

E(0)

)
,

where L2(s) = sH ′
1 (ϵ0s)G (δ5s). Finally, we let

F3(t) = γ1
F2(t)

E(0)
.

By using (71), F3 is equivalent to E and for some σ1 > 0, we have

F ′
3(t) ≤ −σ1L2 (F3(t)) , ∀t ≥ 0.

Simple integration of the previous inequality on (0, t) yields

F3(t) ≤ L −1
1 (σ1t+ σ2) , ∀t ≥ 0,

where L1(s) =
∫ 1

s
(dα/L2(α)), s ∈ (0, 1] and σ2 is a positive constant. Em-

ploying the fact that F3 ∼ E, our result is deduced. □
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[25] A. Zaräı and N. Tatar, Global existence and polynomial decay for a problem with

Balakrishnan-Taylor damping, Arch. Math. (Brno) 46 (2010), no. 3, 157–176.

https://doi.org/10.1093/imamci/dns039
https://doi.org/10.1016/j.camwa.2019.04.010
https://doi.org/10.1016/j.camwa.2017.06.033
https://doi.org/10.1016/j.camwa.2015.05.004
https://doi.org/10.1080/00036811.2016.1268688
https://doi.org/10.1007/s00245-017-9460-y
https://doi.org/10.1007/s00245-017-9460-y
https://doi.org/10.1007/s00033-013-0324-2
https://doi.org/10.1007/s00033-013-0324-2
https://doi.org/10.1007/s00033-012-0268-y
https://doi.org/10.1007/s00033-012-0268-y
https://doi.org/10.1137/060648891
https://doi.org/10.3934/dcdss.2009.2.559
https://doi.org/10.11650/tjm.20.2016.6079
https://doi.org/10.11650/tjm.20.2016.6079
https://doi.org/10.1016/j.aml.2015.11.006
https://doi.org/10.1007/s10884-016-9545-3


966 S. BENKOUIDER AND A. RAHMOUNE

Soufiane Benkouider

Laboratory of Pure and Applied Mathematics

Amar Telidji University
Laghouat 30000, Algeria

Email address: benkouidersoufiane@gmail.com

Abita Rahmoune

Department of Technical Sciences

Laboratory of Pure and Applied Mathematics
Amar Telidji University

Laghouat 30000, Algeria

Email address: abitamaths@gmail.com


