• Title/Summary/Keyword: symplectic structure

Search Result 35, Processing Time 0.027 seconds

A NOTE ON LOCAL CALIBRATIONS OF ALMOST COMPLEX STRUCTURES

  • Kim, Hyeseon
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.384-390
    • /
    • 2022
  • In this paper, we study the obstruction on the jets of an almost complex structure J to the existence of a symplectic form ω such that J is compatible with ω. We describe some almost complex structures on ℝ4 and on ℝ6, respectively, that cannot be calibrated by any symplectic forms. In particular, these examples pertain to the model almost complex structure on ℝ4 in [3], and the simple model structure on ℝ6 in [7].

ON THE NORMAL BUNDLE OF A SUBMANIFOLD IN A KÄHLER MANIFOLD

  • Bang, Keumseong
    • Korean Journal of Mathematics
    • /
    • v.5 no.1
    • /
    • pp.75-82
    • /
    • 1997
  • We show that the normal bundle of a Lagrangian submanifold in a K$\ddot{a}$hler manifold has a symplectic structure and provide the equivalent conditions for the normal bundle of such to be K$\ddot{a}$hler.

  • PDF

NONEXISTENCE OF A CREPANT RESOLUTION OF SOME MODULI SPACES OF SHEAVES ON A K3 SURFACE

  • Choy, Jae-Yoo;Kiem, Young-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.35-54
    • /
    • 2007
  • Let $M_c$ = M(2, 0, c) be the moduli space of O(l)-semistable rank 2 torsion-free sheaves with Chern classes $c_1=0\;and\;c_2=c$ on a K3 surface X, where O(1) is a generic ample line bundle on X. When $c=2n\geq4$ is even, $M_c$ is a singular projective variety equipped with a holomorphic symplectic structure on the smooth locus. In particular, $M_c$ has trivial canonical divisor. In [22], O'Grady asks if there is any symplectic desingularization of $M_{2n}$ for $n\geq3$. In this paper, we show that there is no crepant resolution of $M_{2n}$ for $n\geq3$. This obviously implies that there is no symplectic desingularization.

Symplectic analysis of functionally graded beams subjected to arbitrary lateral loads

  • Zhao, Li;Gan, Wei Z.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.27-40
    • /
    • 2015
  • The rational analytical solutions are presented for functionally graded beams subjected to arbitrary tractions on the upper and lower surfaces. The Young's modulus is assumed to vary exponentially along the thickness direction while the Poisson's ratio keeps unaltered. Within the framework of symplectic elasticity, zero eigensolutions along with general eigensolutions are investigated to derive the homogeneous solutions of functionally graded beams with no body force and traction-free lateral surfaces. Zero eigensolutions are proved to compose the basic solutions of the Saint-Venant problem, while general eigensolutions which vary exponentially with the axial coordinate have a significant influence on the local behavior. The complete elasticity solutions presented here include homogeneous solutions and particular solutions which satisfy the loading conditions on the lateral surfaces. Numerical examples are considered and compared with established results, illustrating the effects of material inhomogeneity on the localized stress distributions.

EXOTIC SMOOTH STRUCTURE ON ℂℙ2#13ℂℙ2

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.691-701
    • /
    • 2006
  • In this paper, we construct a new exotic smooth 4-manifold X which is homeomorphic, but not diffeomorphic, to ${\mathbb{C}}\mathbb{P}^2{\sharp}13\overline{\mathbb{C}\mathbb{P}}^2$. Moreover the manifold X has vanishing Seiberg-Witten invariants for all $Spin^c$-structures of X and has no symplectic structure.

The eigensolutions of wave propagation for repetitive structures

  • Zhong, Wanxie;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.47-60
    • /
    • 1993
  • The eigen-equation of a wave traveling over repetitive structure is derived directly form the stiffness matrix formulation, in a form which can be used for the case of the cross stiffness submatrix $K_{ab}$ being singular. The weighted adjoint symplectic orthonormality relation is proved first. Then the general method of solution is derived, which can be used either to find all the eigensolutions, or to find the main eigensolutions for large scale problems.

DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

  • Darvishzadeh, Mehdi-Reza;William M.Goldman
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.625-639
    • /
    • 1996
  • A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.

  • PDF

The Reaction Probability and the Reaction Cross-section of N + O2→ NO + O Reaction Computed by the 6th-order Explicit Symplectic Algorithm

  • He, Jianfeng;Li, Jing
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1976-1980
    • /
    • 2006
  • We have calculated the reaction probability and the reaction cross-section of the $N(^4S)+O_2(X^3\sum_{g}^{-})\;\rightarrow\;NO(X^2\Pi)+O(^3P)$ reaction by the quasiclassical trajectory method with the 6th-order explicit symplectic algorithm, based on a new ground potential energy surface. The advantage of the 6th-order explicit symplectic algorithm, conserving both the total energy and the total angular momentum of the reaction system during the numerical integration of canonical equations, has firstly analyzed in this work, which make the calculation of the reaction probability more reliable. The variation of the reaction probability with the impact parameter and the influence of the relative translational energy on the reaction cross-section of the reaction have been discussed in detail. And the fact is found by the comparison that the reaction probability and the reaction cross-section of the reaction estimated in this work are more reasonable than the theoretical ones determined by Gilibert et al.

HOMOGENEOUS POLYNOMIAL HYPERSURFACE ISOLATED SINGULARITIES

  • Akahori, Takao
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.667-680
    • /
    • 2003
  • The mirror conjecture means originally the deep relation between complex and symplectic geometry in Calabi-Yau manifolds. Recently, this conjecture is posed beyond Calabi-Yau, and even to, open manifolds (e.g. $A_{n}$ singularities and its resolution) is discussed. While if we treat open manifolds, we can't avoid the boundary (in our case, CR manifolds). Therefore we pose the more precise conjecture (mirror symmetry with boundaries). Namely, in mirror symmetry, for boundaries, what kind of structure should correspond\ulcorner For this problem, the $A_{n}$ case is studied.