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NONEXISTENCE OF A CREPANT RESOLUTION OF SOME
MODULI SPACES OF SHEAVES ON A K3 SURFACE

JAEYOO CHOY AND YOUNG-HooN KIEM™*

ABSTRACT. Let M. = M(2,0,c) be the moduli space of O(1)-semistable
rank 2 torsion-free sheaves with Chern classes ¢; = 0 and ¢z = con a
K3 surface X, where O(1) is a generic ample line bundle on X. When
c = 2n > 4 is even, M, is a singular projective variety equipped with
a holomorphic symplectic structure on the smooth locus. In particular,
M. has trivial canonical divisor. In [22], O’Grady asks if there is any
symplectic desingularization of Mg, for n > 3. In this paper, we show
that there is no crepant resolution of Mp, for n > 3. This obviously
implies that there is no symplectic desingularization.

1. Introduction

Let X be a complex projective K3 surface with polarization H = Ox(1)
generic in the sense of [22] §0. Let M (r, ¢, c2) be the moduli space of rank r
H-semistable torsion-free sheaves on X with Chern classes (¢1, ¢2) in H*(X, Z).
Let M*(r,c1, c2) be the open subscheme of H-stable sheaves in M (r,¢;,cz). In
[19], Mukai shows that M*(r, ¢;, ¢z) is smooth and has a holomorphic symplec-
tic structure. By [6], if either (c;.H) or ¢ is an odd number, then M(2,c1, c2)
is equal to M*(2, ¢y, ¢2) and thus M(2, ¢y, ¢2) is a smooth projective irreducible
symplectic variety. However if both (c;.H) and ¢s are even numbers then gen-
erally M(2,c1,c2) admits singularities. We restrict our interest to the trivial
determinant case i.e., ¢; = 0 and let M, = M(2,0,c), where ¢ = 2n (n > 2).
It is well-known that Ma,, is an irreducible, normal ([26] Theorem 3.18) and
projective variety ([12] Theorem 4.3.4) of dimension 8n — 6 ([19] Theorem 0.1)
with only Gorenstein singularities ([12] Theorem 4.5.8, [5] Corollary 21.19).
Since My, contains the smooth open subset M3, there arises a natural ques-
tion: does there exist a resolution of Ma, such that the Mukai form on M3,
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extends to the resolution without degeneration? When ¢ = 4, O’Grady success-
fully extends the Mukai form on M3, to some resolution without degeneration
(20, 22]). At the same time, he conjectures nonexistence of a symplectic desin-
gularization of My, for n > 3 ([22], (0.1)). Our main result in this paper is the
following.

Theorem 1.1. Ifn > 3, there is no crepant resolution of Ma,,.

The highest exterior power of a symplectic form gives a non-vanishing section
of the canonical sheaf on Ms,,. Likewise any symplectic desingularization of
Ms,, has trivial canonical divisor and hence it must be a crepant resolution.
Therefore, O’Grady’s conjecture is a consequence of Theorem 1.1.

Corollary 1.2. If n > 3, there is no symplectic desingularization of Ma,.

The idea of the proof of Theorem 1.1 is to use a new invariant called the
stringy E-function [1, 4]. Since M, is normal irreducible variety with log
terminal singularities ([22], 6.1}, the stringy E-function of My, is a well-defined
rational function. If there is a crepant resolution MM of Ms,,, then the stringy
E-function of My, is equal to the Hodge-Deligne polynomial (E-polynomial)
of M2n (Theorem 2.1). In particular, we deduce that the stringy E-function
Est(Mosn; u,v) must be a polynomial. Therefore, Theorem 1.1 is a consequence
of the following.

Proposition 1.3. The stringy E-function Eg(May;u,v) is not a polynomial
forn > 3.

To prove that Es(May;u,v) is not a polynomial for n > 3, we show that
Es¢(Map; 2, 2) is not a polynomial in 2. Thanks to the detailed analysis of Kir-
wan’s desingularization in [20] and [22] which is reviewed in section 4, we can
find an expression for E;(Mbs,; z, z) and then with some efforts on the combi-
natorics of rational functions we show that E,:(Mz,; 2, z) is not a polynomial
in section 3. In section 2, we recall basic facts on stringy E-function and in
section 5 we prove a lemma which computes the E-polynomial of a divisor.

In [22], O’Grady gets a symplectic desingularization M, of Ma, in the case
when n = 2. This turns out to be a new irreducible symplectic variety, which
means that it does not come from a generalized Kummer variety nor from a
Hilbert scheme parameterizing 0-dimensional subschemes on a K3 surface [21,
2]. Corollary 1.2 shows that unfortunately we cannot find any more irreducible
symplectic variety in this way.

After we finished the first draft of this paper, we learned that Kaledin and
Lehn [13] proved Corollary 1.2 in a completely different way. We are grateful
to D. Kaledin for informing us of their approach. The second named author
thanks Professor Jun Li for useful discussions concerning the article [23]. Fi-
nally we would like to express our gratitude to the referee for careful reading
and challenging us for many details which led us to improve the manuscript
and correct an error in Proposition 3.2.
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2. Preliminaries

In this section we collect some facts that we shall use later.
For a topological space V, the Poincaré polynomial of V is defined as

(2.1) P(Viz) =) (-1)'bi(V)z,

where b;(V) is the i-th Betti number of V. It is well-known from [7] that
the Betti numbers of the Hilbert scheme of points X[ in X are given by the
following;:

(2.2) > pxt e = 1] H 222k (Db (X),

n>0 k>11:=0

Next we recall the definition and basic facts about stringy E-functions from
[1, 4]. Let W be a normal irreducible variety with at worst log-terminal singu-
larities, i.e.,

(1) W is Q-Gorenstein;

(2) for a resolution of singularities p : V' — W such that the exceptional
locus of p is a divisor D whose irreducible components Dy, ..., D, are
smooth divisors with only normal crossings, we have

Ky =p"Kw + ZaiD
i=1
with a; > —1 for all 4, where D; runs over all irreducible components
of D. The divisor Y _;_; a;D; is called the discrepancy divisor.
For each subset J C I = {1,2,...,r}, define D; = N;csD;, Dy =V and
DY = Dj — Ujer_sD;. Then the stringy E-function of W is defined by

uv — 1
(23) sth’U %E DJ,U’U H]W_—l,

where

E(Z;u,v) ZZ VP4 (HE(Z; C))uPr?
P9 k20
is the Hodge-Deligne polynomial for a variety Z. Note that the Hodge-Deligne
polynormials have
(1) the additive property: E(Z;u,v) = E(U;u,v) + E(Z ~U;u,v) if U is
a smooth open subvariety of Z;
(2) the multiplicative property: E(Z;u,v) = E(B;u,v)E(F;u,v) if Z is a
Zariski locally trivial F-bundle over B.
By [1] Theorem 6.27, the function FEy; is independent of the choice of a
resolution (Theorem 3.4 in 1]} and the following holds.
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Theorem 2.1 ([1] Theorem 3.12). Suppose W is a Q-Gorenstein algebraic
variety with at worst log-terminal singularities. If p : V. — W is a crepant
desingularization (i.e., p*Kw = Kv) then Eg¢(W;u,v) = E(V;u,v). In par-
ticular, Es;(W;u,v) is a polynomial.

3. Proof of Proposition 1.3

In this section we first find an expression for the stringy E-function of the
moduli space My, for n > 3 by using the detailed analysis of Kirwan’s desin-
gularization in [20, 22]. Then we show that it cannot be a polynomial, which
proves Proposition 1.3.

We fix a generic polarization of X as in [22]. The moduli space My, has a
stratification

My = M5, U(Z-Q)LQ,

where M3, is the locus of stable sheaves and ¥ ~ (X[ x X[ /involution is
the locus of sheaves of the form Iy @ Iz ([Z],[2’] € X!™) while @ ~ X[
is the locus of sheaves Iz & Iz. For n > 3, Kirwan’s desingularization p :
]T/I\gn — Mo, is obtained by blowing up Ms, first along 2, next along the
proper transform of ¥ and finally along the proper transform of a subvariety A
in the exceptional divisor of the first blow-up. This is indeed a desingularization
by [22] Proposition 1.8.3.

Let D; = Q, D = ¥ and Ds = A be the (proper transforms of the)
exceptional divisors of the three blow-ups. Then they are smooth divisors with
only normal crossings as we will see in Proposition 3.2 and the discrepancy
divisor of p : J/\l\gn — Ma, is ([22], 6.1)

(6n — 7)D1 + (2?’L — 4)D2 -+ (47’L - 6)D3

Therefore the singularities are log-terminal for n > 2, and from (2.3) the stringy
E-function of Mj,, is given by

E(M3,,;u,v) + E(D(l); ) e (1”““ + E(Dg; u, V) ———;—1_(11;’)‘”"_3

=l
(3.1) +B(D5;u,v) t=fyt=s + E(Dlas u,v) 1= s T (i
+E (D335 u, v) yatis T
+E(D3;u,v) s T
+E( D354, v) I=(siies Tl s (s

We need to compute the Hodge-Deligne polynomials of DS for J C {1, 2, 3}.
Let (C?",w) be a symplectic vector space. Let Gr*(k, 2n) be the Grassmannian
of k-dimensional subspaces of C2", isotropic with respect to the symplectic form
w (i.e., the restriction of w to the subspace is zero).
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Lemma 3.1. For k < n, the Hodge-Deligne polynomial of Gr*(k,2n) is
v)2n—2k+2i

1—(u
H 1— (uv)?

1<i<k

Proof. Consider the incidence variety
Z ={(a,b) € Gr*(k — 1,2n) x Gr¥(k,2n)|a C b}.

This is a P?*~2%*+1hundle over Gr¥(k — 1,2n) and a P*~!-bundle over Gr*(k,
2n). We have the following equalities between Hodge-Deligne polynomials:
1— (uv)Qn—2k+2

E(Z;u,v) = —-W—E(er(k—lﬂn);u,v)

1— k
= T%—E(Gr‘”(k, 2n); u,v).
The desired formula follows recursively from Gr*(1,2n) = P2"—1. O

Let 5 be the blow-up of P® (projectivization of the space of 3 x 3 symmetric
matrices) along P? (the locus of rank 1 matrices). We have the following from
[20] and [22]. The proof will be presented in §4.

Proposition 3.2. Letn > 3.

(1) Dy is a B%-bundle over a Gr*(3,2n)-bundle over X",

(2) DY is a free Zy-quotient of a Zariski locally trivial Ip,_3-bundle over
X X A where A is the diagonal in X™ x X" and I,,_5 is the
incidence variety given by

I3 = {(p, H) € P>»3 x P?"3|p ¢ H}.

(3) D3 is a P*™“.bundle over a Zariski locally trivial P?-bundle over a
Zariski locally trivial Gr* (2, 2n)-bundle over X

(4) Dy is a P2-bundle over a P2-bundle over a Gr*(3,2n)-bundle over X",

(5) Da3 is a P2"~4-bundle over a P'-bundle over a Gr*(2,2n)-bundle over
XM,

(6) D13 is a P2-bundle over a P2-bundle over a Gr*(3,2n)-bundle over X,

(7) D123 is a P -bundle over a P?-bundle over a Gr(3,2n)-bundle over X[™.
All the above bundles except in (2) and (3) are Zariski locally trivial. Moreover,
D; (i = 1,2,3) are smooth divisors such that D, U D2 U D3 is normal crossing.

From Lemma 3.1 and Proposition 3.2, we have the following corollary by
the additive and multiplicative properties of the Hodge-Deligne polynomial.

Corollary 3.3.
E(Dl; Uu, ’U) P (1_("“’)6 _ 1—(uv)? + (1_(1“])3 )2>

1—uv 1-uv 1—uv

¢ IT (S45) x B
1<i<3
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E(Ds;u,v) = I-(uv)®* % 1—(u)® % H ( u)?" - 4“1) % E(X["];U,’U),

1—uv 1—uv 1 (uv)i
1<i<2
2 n— i
B = (F22)7 x T (52 x Bxru,0),
1<i<3

B(Dygju,v) = =4t 5l o TT (24905507 ) x B(x s w,v0),
1<i<2

B(Dysswv) = 00 4= ] (B ) < B0,
1<4i<2

B(DYy;u,v) = L) | 1=(uot I (LM) x B(X1u, ).

l—uv 1—uv 1—(uv)?
1<i<2

Proof. Perhaps the only part that requires proof is the equation for E(Ds3; u, v).
From Proposition 3.2 (3), D3 is a projective variety which is a P**~*-bundle
over a smooth projective variety, say Y, whose E-polynomial is

E(P?u,v) x B(Gr¥(2,2n);u,v) x BE(XM; 4, v).
By the Leray-Hirsch theorem ([24] p.182), we have

H*(D3C) = H*(Y;C)® H*(P*~*,C) = H*(Y;C) ® C[\|/(3*"7?)
~ H*(Y;C)eoH(Y;OMN®--- & H*(Y;C)N*" 4,
where X is a class of type (1,1) which comes from the Kihler class. The

above determines the Hodge structure of D3 because the Hodge structure is
compatible with the cup product. Therefore we deduce that

E(Ds;u,v) = 0072 o B(Y;u,v).

1-uv

0
For the E-polynomial of DY we have the following lemma whose proof is
presented in section 5. Recall that

2n—3
Ins = {((2:), (7)) € P73 x P8 | 3" gy, = 0}

=0

and there is an action of Z, which interchanges (£;) and (y;). Let H" (I2n—3)"
denote the Zs-invariant subspace of H" (Ig,—3) .

Lemma 3.4.

| [n].ZQ_ [n]22
(3.2) B(DY;z,2) = P(IQn_B;Z)(P(X ; 2) 2P(X : ))

+P+(12n—332)(P(X[n]§22) - P(X[n]ﬂ)),
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where P (I3, 3;2) = Z(—l)rz’” dim H" (Ion,_3)t. Moreover
r>0
1— (22)277,—3

3.3 E(DY: =
( ) ( 27272) 1— 22

Q(z%)
for some polynomial Q.

Proof of Proposition 1.3. Let us prove that (3.1) cannot be a polynomial. Let
S(2) = Eqt(Man; 2, 2) — E(M3,; 2, 2).

It suffices to show that S(z) is not a polynomial for all n > 3 because E(M;,;
z, %) is a polynomial.

Note that given any n > 3, we can explicitly compute E(X;z 2) and
E(DY;2,2) by (2.2) and Lemma 3.4. If n = 3, direct calculation shows that
S(z) is as follows:

S(z)

= 1+462% +8522* + 123082° + 1116412° + 8866292'° + 42331512"2
44990239z + 49992612 + 42308522® + 8844417%° 4 113877272
+129282* + 37492%° + 320022 + 28772%° 299232 + - - - .

It is easy to see from (3.1) and Corollary 3.3 that if S(z) were a polynomial,
it should be of degree < 30. Since the series S(z) has a nonzero coefficient of
232, S(z) cannot be a polynomial. So we assume from now on that n > 4.

Express the rational function S(z) as

N(z)
0= P (o)~ (o)

All we need to show is that the numerator N(z) is not divisible by the denom-
inator (1 — (22)2"~%)(1 — (22)**~%)(1 — (22)%"~6).

As E(X["; 2, z) and E(DY; z, z) do not have nonzero terms of odd degree by
(2.2) and Lemma 3.4, all the nonzero terms in S(z) are of even degree by (3.1)
and Corollary 3.3. Hence, we can write S(z) = s(z?) = s(t) for some rational
function s(t) in ¢+ = 22. The numerator N(z) = n(2%) = n(t) is not divisible
by 1 — (22)2=3 if and only if n(t) is not divisible by 1 — ¢*"=3. By direct
computation using (3.1), Corollary 3.3 and Lemma 3.4, n(t) modulo 1 — ¢27—3
is congruent to

(34)  (1—8)7(1 — %) x (11—_tj)2>< TT (=4 xp(xii)
1<i<3

(- - 0 x A T () wop(x

(1021100 2 S T () xop(x )
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(1 - 1) x =2 = T (HTL) x (X" 1),
1<i<2
where p(X[; t) = P(X["l; 2) with t = 22. We write (3.4) as a product 3(¢) -
p(X™; 1) for some polynomial 5(t). For the proof of our claim for n > 4, it
suffices to prove the following:
(1) ifnis not divisible by 3, then 1 — ¢ is the GCD of 1 — ¢2*~2 and 5(t),
and 1= t > does not divide p(X™; 2);
(2) ifnis d1v1s1b1e by 3, then 1 — 3 is the GCD of 1 — ¢2"~3 and (t), and
1_lt_2:3_3 does not divide p(X[™;t).

For (1), suppose n is not divisible by 3. From (3.4), 5(¢) is divisible by 1 —¢.
We claim that 5(t) is not divisible by any irreducible factor of I—“f—z_:t_—a, i.e., for
any root o of 1 —¢2"~3 which is not 1, §(a) # 0. Using the relation 2”3 =1,
we compute directly that

(3.5) 5(a) = —2za)(=a’)’

14« ’

which is not 0 because 3 does not divide 2n — 3.
Next we check that 1= t does not divide p(X[™;¢). We put

(X 1) Z it

0<i<2n
and write p(X[;t) as follows:
Z citi
0<i<2n
(36) = (co+can—3)+ (c1+can2)t+ (c2+ con-1)t® + (c3 + con)t®
+ Y ettt oo s = 1) + oppat(t 2 - 1)

4<i<2n—4
Feon 182 (73 — 1) 4+ cont®(t 3 — 1),

Therefore, the divisibility of p(X[™;¢) by l_lt ';—3 is that of (co + con_3) +
(c1 + Can—2)t + (c2+ con-1)t? + (c3 + c2n)t® + Y cit’ by L5E5— Since
4<i<2n—4a
1-1{";3 = Z t', the polynomial (co + con_3) + (c1 + can—2)t + (c2 +
0<i<2n—4
an_l)tz + (03 + CQn)ts + Z Citi is divisible by 1
4<i<on—4
a scalar multiple of Z t', ie., o+ Can—3 = €1 + Con—2 = Co + Con_1 =
0<i<2n—4
cg+cam=cqg =" =Cong (n2>4).
Table 1 is the list of ¢; (1 < i < 4) for n > 3, which comes from direct
computation using the generating functions (2.2) for the Betti numbers of X[,

= [3 if and only if it is



NONEXISTENCE OF A CREPANT RESOLUTION OF MODULI SPACES 43

TABLE 1. list of ¢;

|n=3 n=4 n=5 n=6 n=7 n>8
a| 23 23 23 23 23 23
ca| 299 300 300 300 300 300
c3 | 2554 2852 2875 2876 2876 2876
ca| 299 19298 22127 22426 22449 22450

By Table 1, we can check that this is impossible. Indeed, for n > 6, ¢ = 1,
c1 = 23, o = 300 and ¢3 = 2876, which implies cg,-3 = 2876, con,—2 = 300,
con—1 = 23 and cz,_2 = 1 by Poincaré duality. Thus ¢y + ¢2,,—3 = 2877 while
¢1 + con—o = 323. For 4 < n < 5, the proof is also direct computation using
Table 1.

For (2), suppose 3 divides n and n # 3. Then from (3.5), (1 — ¢3) divides
5(t). More precisely, for a third root of unity o, §(@) = 0. On the other hand,
if v is a root of 1 —¢2"~3 but not a third root of unity then we can observe that

5(a) # 0 by (3.5). Therefore since every root of 1 —t?"~3 is a simple root, any

1—¢2"
1—t3

We next check that the polynomial 1=
(XM t) = T icon cit® as follows:

Z Citi

0<i<2n
(37) = (Co + an_g) + (01 + an_z)t + (02 + C2n_1)t2 + (63 + an)t3

2n—-9 2n—-9

+ Z st — Czn—s( Zs: t32’+1) . CZn——4< Za: t3i+2)

4<i<2n—-6 i=0 =0

irreducible factor of > does not divide §( )

> does not divide p(X:t). Write

n—3 2n-3 —
Feanost - I ey, gt? 1S e (8270 — 1)

+e2n-2t(t?" 7% — 1) + con1 8 (1772 — 1) + 3 (273 - 1),

where the equality comes from

2n9

2n—5 _ 3i+1 —¢2n 3
e Zt’ +t- 1

and

2n9

$2n—4 _ Z t3z+2+t2 1— t2"—3
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2n-6
since %:;—3 = Z t%. Therefore, p(X;t) modulo 1_1t_2:3_ > is congruent to
i=0
R(t) = (co+can—3)+(c1+ con—2)t + (ca+ can—1)t® + (c3 + can)t3
2n—9 2n—9
5= 5=
+ Z cit' — can—s ( Z t3i+1) — Con—4 ( Z t3i+2).
4<i<In—6 =0 =0
2n-6
2n—3 3 :
Now R(t) is divisible by 157 = > 3 if and only if R(t) is a scalar
angs | -
multiple of Z t% because R(t) is of degree < 2n — 6. Thus the coefficient

i=0
of R(t) with respect to t? should be 0 i.e., ¢z + can_1 — Can—s = 0. However,
C2+Can—1—C2n—4 = C2+C1 — ¢4 is not zero by Table 1. This proves Proposition
1.3 for the case, where 3 divides n and 7 # 3. So the proof of Proposition 1.3
is completed for any n > 3. 0

Remark 3.5. In case of smooth projective curves, we remark that the stringy
E-function of the moduli space of rank 2 bundles is explicitly computed ([14]
and [16]). We were not able to compute the stringy E-function of My, pre-
cisely, because we do not know how to compute the Hodge-Deligne polynomial
E(M3,,;u,v) of the locus M3, of stable sheaves.

4. Analysis of Kirwan’s desingularization

This section is devoted to the proof of Proposition 3.2. All can be extracted
from [20] but we spell out the details for reader’s convenience.

To begin with, note that for each Z € X"} the tangent space Txn z of the
Hilbert scheme X! is canonically isomorphic to Ext(Iz,17), where I is the
ideal sheaf of the 0-dimensional closed subscheme Z. By the Yoneda pairing
map and Serre duality, we have a skew-symmetric pairing w : Ext'(Iz,Iz) ®
Extl(IZ,IZ) — Ext2(IZ,IZ) = C, which gives us a symplectic form w on the
tangent bundle Ty by [19] Theorem 0.1.

Note that the Killing form on si(2) gives an isomorphism s{(2)V & si(2).
Let W = sl(2)V = sl(2) =2 C3. The adjoint action of PGL(2) on W gives us
an identification SO(W) = PGL(2) ([20] §1.5). For a symplectic vector space
(V,w), let Hom“ (W, V') be the space of homomorphisms from W to V whose
image is isotropic. Let Hom®“ (W, T ) be the bundle over X" whose fiber
over Z € X" is Hom*(W, T n ). Clearly Hom® (W, Txi) is Zariski locally
trivial over X[™. Let Hom{ (W, Tn) be the subbundle of Hom® (W, T'x ) of
rank < k elements in Hom"” (W, Tx (). Also let Gr¥(3, T () be the relative
Grassmannian of isotropic 3-dimensional subspaces in T'y(») and let B denote
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the tautological rank 3 bundle on Gr*(3,Tx). Obviously these bundles are
all Zariski locally trivial as well.

Let PHom® (W, Txn) (resp. PHomj (W, Tx)) be the projectivization of
Hom®“ (W, Txin) (resp. Homj (W, Txin)). Likewise, let PHom(W, B) and
PHomy (W, B) denote the projectivizations of the bundles Hom (W, B) and
Homy (W, B). Note that there are obvious forgetful maps

f : PHom(W, B) — PHom"” (W, T'xn ) and
fi : PHomy (W, B) — PHomy (W, T'x )

Since the pull-back of the defining ideal of PHom{ (W, T ) is the ideal of
PHom; (W, B) (both are actually given by the determinants of 2 X 2 minor
matrices), f gives rise to a map between blow-ups

 + Blptom, (w,3)PHom(W, B) — Blpsiomy (w,T () PHom® (W, Txtm).

Let us denote Blprom, (w,s)PHom(W, B) by BI® and Bl]pHomalu(WjX[n])IPHom“’
(W, Txm) by BIT. We denote the proper transform of PHomy(W, B) in BI®
by BIZ and the proper transform of PHomy (W, T =) by BlY. Since BIZ is
a Cartier divisor which is mapped onto Bl and the pull-back of the defining
ideal of BIf is the ideal sheaf of BIZ, f lifts to

(4.1) f:BI® = BlggBI”.

By [20] §3.1 IV, fis an isomorphism on each fiber over X" so in particular
f is bijective. Therefore, f is an isomorphism by Zariski’s main theorem.

Note that PHom(W,B)/SO(W) (resp. PHomy(W,B)/SO(W)) is isomor-
phic to the space of conics P(S%B) (resp. rank < k conics P(S2B)), where the
SO(W)-quotient map is given by [a] — [a o a?], where o' denotes the trans-
pose of a € Hom(W, B) ([20] §3.1). Let P(S2B) = Bl]p(s%B)P(Szg) denote the
blow-up along the locus of rank 1 conics. Then BI®/SO(W) is canonically
isomorphic to P(S2B) by [17] Lemma 3.11. Since B is Zariski locally trivial, so
is P($2B) over Gr*(3, Txnl).

Now consider Simpson’s construction of the moduli space My, ([20] §1.1).
Let ) be the closure of the set of semistable points J°° in the Quot-scheme
whose quotient by the natural PGL(N) action is M, for some even integer
N. Then Q°° parameterizes semistable torsion-free sheaves F' together with
surjective homomorphisms h : O®¥ — F(k) which induces an isomorphism
CN = HY(F(k)) and H'(F(k)) = 0. Let Qg denote the subset of Q*¢ which
parameterizes sheaves of the form Iz & Iz for some Z € X[, This is precisely
the locus of closed orbits with maximal dimensional stabilizers, isomorphic to
PGL(2) and the quotient of Qg by PGL(N) is X",

We can give a more precise description of {2 as follows. Let L — X ] » X
be the universal rank 1 sheaf such that L]z« x is isomorphic to the ideal sheaf
Iz. By [12] Theorem 10.2.1, the tangent bundle Ty is in fact isomorphic
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to Extl ., (L,L). Let p: XM x X — X[ be the projection onto the first

component. For k> 0, p.L(k) is a vector bundle of rank N/2. Let
(4.2) q : Plsom(CY, p.L(k) ® p.L(k)) — X

be the PG L(N)-bundle over X" whose fiber over Z is Plsom(CY, H (Iz (k)&
Iz(k))). Note that the standard action of GL(N) on CV and the obvious
action of GL(2) on p,L(k) ® p,L(k) induce a PGL(N) x PGL(2)-action on
Plsom(CV, p.L(k) @ p.L(k)) — X[,
Lemma 4.1. (1) Qg = Plsom(CV, p,L(k) ® p.L(k))/SO(W).

(2) Via the above isomorphism, the normal cone of Qg in Q*° is

¢"Hom" (W, Tx i) SO(W) — Plsom(CV, p.L(k) ® p.L(k)) ) SO(W)
whose fiber over a point lying over Z € X" 4s Hom* (W, Txm z)-

Proof. (1) Let p : PIsom(CY,p,L(k) ® p.L(k)) x X — Plsom(CV, p,L(k) @
p«L(k)) be the obvious projection so that we have gop =po (g x 1x). Let H
be the dual of the tautological line bundle over Plsom(CV, p,L(k) @ p.L(k)).
There is a canonical isomorphism O®VN 2 ¢*(p,L(k) ® p.L(k)) ® H. This
induces a surjective homomorphism
0N = p'¢*(puh(k) @ pL(k) ® H
= (¢ x 1)*(p"p.L(k) @ p"p.L(k)) ® H
— (gxD)"(Lk)dLk)®H
over Plsom(C", p,.L(k) ® p.L(k)) x X. By the universal property of the Quot-
scheme, we get a morphism Plsom(CV, p.L(k) ® p.L(k)) — Q% whose image
is clearly contained in Q. This map is PGL(2)-invariant and hence we get a
morphism
(4.3) ¢q : Plsom(CY, p, L (k) @ p.L(k)) JSOW) — Q.

It is easy to check that ¢gq is bijective. Since Qg is smooth ([20] (1.5.1)), ¢q is
an isomorphism by Zariski’s main theorem.

(2) Let O®N — &(k) denote the universal quotient sheaf on Q% x X re-
stricted to g and let F be the kernel of the twisted homomorphism O®V (—k)
— € so that we have an exact sequence

0—=F—0®N(—k)—-€-0
over 0o x X. The induced long exact sequence gives us
(4.4) Homa, (0% (—k), &) — Homa, (F, &)
— &utgy, (€, &) — &ty (09N (=k), €).
Let 7 : Qg x X — Qg be the obvious projection. Note that &xtg (0PN (-k), €)

(-
= R'm,(&(k))®N = 0 and that S#omgq,(0®N(—k),€) = JfomQQ(O@N &(k))
is a vector bundle over Qg whose fiber is gl(N) because O%" = HO(E(k)) for



NONEXISTENCE OF A CREPANT RESOLUTION OF MODULI SPACES 47

any [08Y = E(k)] € Q%°. Let T§ss, T, be cotangent sheaves over Q°° and
Qg respectively. By a famous result of Grothendieck ([10] §5) we know

(Theel00)¥ & Homay (F,€)

which contains the tangent bundle of {1 as a subbundle. So the first homo-
morphism in (4.4) is the tangent map of the group action of PGL(N)! on Qg
and the second homomorphism is the Kodaira-Spencer map.

Via the isomorphism ¢q (4.3), we have a map

J: Plsom(CY, p, L (k) @ p. L(k))
— PIsom(CY, p. L (k) ® p.L(k)) /SO(W) = Qq.

From the proof of (1) above, the pull-back of € by § x 1 is isomorphic to
(gx1)*(L(k)®L(k))®H and thus the vector bundle 6*8:ct}2Q (€, &) is isomorphic
to

q*&vtk[n] (L,L0) ® gl(2) =2 ¢*Txin ® gl(2).
The pull-back of the tangent sheaf of X[ sits in ¢*Tym ® g1(2) as ¢*Txin @
((1) (1)) Hence the pull-back by & of the normal bundle of Qg (in the sense of
[20] §1.3) is isomorphic to

g Txim @ sl(2) & ¢"Hom(W, T im ).

By [20] (1.5.10), the normal cone is fiberwisely the same as the Hessian cone.
(See [20] §1.3 for more details on the Hessian cone.) Since the normal cone is
contained in the Hessian cone, the normal cone is equal to the Hessian cone
which is the inverse image of zero by the Yoneda square map Y : Extg, (€, €) —
&tt?zQ(S, &). It is elementary to see that §* Y ~1(0) is precisely ¢* Hom* (W, T (n))-
Since SO(W) acts freely we obtain (2). See [20] (1.5.1) for a description of the
normal cone at each point. O

Let ¥ denote the subset of Q°° whose sheaves are of the form I'z & Iw for
some Z,W € X", Then 3 — Qg is precisely the locus of points in Q*° whose
stabilizer is isomorphic to C*. Let mg : R — @°° be the blow-up of *° along
Qo and let Qp denote the exceptional divisor. By the above lemma, we have

(4.5) Qg & ¢*PHom" (W, Tk} SO(W).
The following lemma is an easy exercise.

Lemma 4.2. (1) The locus of points in PHom* (W, Tx1n) 7)*° whose stabilizer
is 1-dimensional by the action of SO(W) is precisely PHomy (W, T 7)*°.
(2) The locus of nontrivial stabilizers is PHoms (W, Txiny 7).

n fact the term prior to the first term of (4.4) is Homa,, (€, €) which contains O
obviously and the quotient of H#omgq, ( 0PN (~k), &) by O is a vector bundle whose fiber is
the Lie algebra of PGL(N).
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Let
(4.6) Ap = ¢'PHom4 (W, Txn) / SO(W).
Let £ be the proper transform of ¥g. Then X% is precisely the locus of points

in R*® with 1-dimensional stabilizers by [17]. Therefore we have the following
from Lemma 4.2.

Corollary 4.3. X3 N Qg = ¢*PHom{ (W, Txm1)** ) SO(W).
We have an explicit description of X% from [20] §1.7 III as follows. Let
B:xt — xl x xnl

be the blow-up along the diagonal and let DC([)n] = XM x XM _ A where A is the
diagonal. Let L (resp. L2) be the pull-back to X" x X of the universal sheaf
L — X" x X by pizo (B x 1) (resp. pag o (B x 1)), where p;; is the projection
onto the first (resp. second) and third components. Let p : X"l x X — X"l be
the projection onto the first component. Then for & >> 0, pL1(k) D p.Lo(k)
is a vector bundle of rank N. Let

g : Plsom(CN, p. L1 (k) @ po Lo (k)) — XM

be the PGL(N)-bundle. There is an action of O(2) on Plsom(CV,p,L; (k) &
p.La(k)). We quote [20] (1.7.10) and (1.7.1).

Lemma 4.4. (1) % = Plsom(CV, p.L1(k) ® p.L2(k))JO(2).
(2) The normal cone of £%5 in R*% is a locally trivial bundle over ¥3§ with
fiber the cone over a smooth quadric in P45,

In fact we can give a more explicit description of the normal cone when
restricted to £% := X% — Qp. Similarly as in the proof of Lemma 4.1, the
normal vector bundle to %% is isomorphic to the vector bundle (of rank 4n — 4)

(4.7) g€ty (L1, £2) © Exti (L2, £1)]/O(2)

over Plsom(CV,p.L; (k) ® p.L2(k))/O(2), where O(2) acts as follows: if we
realize O(2) as the subgroup of PGL(2) generated by

SO(2) = {0 = (8‘ a91>}/{i1d}, = ((1’ (1)>

6, multiplies v (resp. a~1) to L1 (resp. L) and 7 interchanges £; and Lo
by the induced action on X" of interchanging the first and second factors of
X" x X" The normal cone is the inverse image g*Y~1(0) of zero in terms
of the Yoneda pairing

(48) T: Ext;l[)n] (Ll, Lg) © Ext;‘[)n] (LQ, Ll) —> €$t2xgz] (Ll, Ll)

Let ng : § — R*® denote the blow-up of R*® along ¥% and let £g be the
exceptional divisor of g while Qg (resp. Ag) denotes the proper transform of
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Qg (resp. Ag). By (4.8), we have
Sslezizey = ¢'PYTH0)/0(2)
(4.9) c q*]P’[Ext;C([)n] (L1,L2) ® Sxt:lx([)n] (L2,£1)]/0(2).

By [20] (1.8.10), S°® = 5% and S° is smooth. The quotient S/ PGL(N) has
only Z-quotient singularities along Ag/PGL(N). Let np : T — S* be the
blow-up of S° along Ag. Then T'/PGL(N) is nonsingular and this is Kirwan’s
desingularization p : J/M\% — My,

Let Qr and X1 denote the proper transforms of g and X respectively. Let
Ar be the exceptional divisor of 7. Their quotients Qr / PGL(N), L7/ PGL(N)
and A7 /PGL(N) are denoted by D; = Q, Dy = 3 and D5 = A respectively.

With this preparation, we now embark on the proof of Proposition 3.2.

Proof of (1). This is just [20] (3.0.1). More precisely, by (4.5) and Corollary
4.3, Qg is the blow-up of

¢*"PHom® (W, T () ) SO(W) along ¢*PHomy (W, T'x(n) J/ SO(W).
By (4.6), Qr is the blow-up of {2g along the proper transform of
q*]P’Hom‘; (VV, Tx[n] )//SO(W)

and D; = () is the quotient of Qr by the action of PGL(N). Since the action
of PGL{N) commutes with the action of SO(W), D; is in fact the quotient
by SO(W) x PGL(N) of the variety obtained from ¢*PHom® (W, Tx ) by two
blow-ups. So Dj is also the consequence of taking the quotient by PGL(N)
first and then the quotient by SO(W) second. Since ¢ in (4.2) is a principal
PGL(N) bundle, the result of the first quotient is just BlgrBI" in (4.1)

which is isomorphic to BI®. If we take further the quotient by SO(W), then
as discussed above the result is D; = P(S2B). O

Proof of (2). We use Lemma 4.4, (4.7), and (4.9). Note that X% does not
intersect with Qg and Ag. Hence DY is the quotient of ¢*PY~1(0)/O(2)
which is a subset of q*]P‘[Sztl o (L£1,L2) @Sxtx[n] (L2, £1)]/O(2), by the action

of PGL(N). The above are bundles over the restriction of
PIsom(CY, p, L1 (k) ® p.L2(k)) JO(2)

to the complement DC([)"] of the diagonal A in X[ x X[, As in the proof
of (1), observe that DY is in fact the quotient of ¢*PY~1(0) by the action of
PGL(N) x O(2) since the actions commute. So we can first take the quotient
by the action of PGL(N), then by the action of SO(2), and finally by the
action of Zy = O(2)/S0(2). Since PIsom(CV, p, L1 (k) ®p.Lo(k)) is a principal
PGL(N)-bundle, the quotient by PGL{N) gives us

PY~(0) C P[E:I:t i) (L1, L0) @ Exth (Lo, L1)]

x["]
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over fx([J The algebraic vector bundles Ext! Xt (L1, L) and Ext} e (Lo, L1) are

certainly Zariski locally trivial and in fact these bundles are dual to each other
by the Yoneda pairing T which is non-degenerate (possibly after tensoring with
a line bundle). In particular, Y=1(0) is Zariski locally trivial.

Next we take the quotient by the action of SO(2) = C*. This action is

trivial on the base I)CB"] and SO(2) acts on the fibers. Hence PY~1(0)/50(2)
is a Zariski locally trivial subbundle of
PlEty g (L1, L2) © Emtyga (L2, £1)]/C”

= ngtx[n] (Ll,LQ) x([)n] Peil:tx[[)n] (LQ,Ll)

over DC([)"] given by the incidence relations in terms of the identification

]ngt]f-xé"] (Ll,Lg) ]P)S.Ttx[n] ([J2’£J1)V.

Finally, DY is the Zo-quotient of PY~1(0)/SO(2). O
Proof of (3). By [20] (1.7.10), the intersection of X% and Qg is smooth. By

Corollary 4.3, Ag is the blow-up of ¢*PHoms (W, T )/ SO(W) along ¢*P
Hom% (W, T in) / SO(W). Hence Ag/PGL(N) is the quotient of

BlyspHomy (W,T, ()9 PHom (W, Txm)
by the action of SO(W) x PGL(N). By taking the quotient by the action of
PGL(N) we get
Blptiomy (W, ) PHomS (W, T m )
since ¢ is a principal PGL(N)-bundle. Next we take the quotient by the action
of SO(W). Let Gr¥(2,Txm) be the relative Grassmannian of isotropic 2-

dimensional subspaces in Ty and let A be the tautological rank 2 bundle on
Gr*(2,Tx ). We claim

(4.10) Blpgomg (w,T, 1) PHOmMS (W, Tx 1) / SO(W) = P(S?A)
which is a P2-bundle over a Gr*(2, 2n)-bundle over X [’ﬂ. It is obvious that the

bundles are Zariski locally trivial.
There are forgetful maps

[ : PHom(W, A) — PHom$ (W, T'xtn)
f1: PHom; (W, A) — PHom{ (W, T'xn1),
where the subscript 1 denotes the locus of rank < 1 homomorphisms. Because
the ideal of PHom{ (W, Tj,,)) pulls back to the ideal of PHom; (W, A), f lifts to
f : Blprom, (w,0)PHom(W, A) — Blproms w,T, 1) PHomS (W, Txtn1 ).

This map is bijective ([20] (3.5.1)) and hence f is an isomorphism by Zariski’s
main theorem because the varieties are smooth. Now observe that the quotient
PHom(W, A) /SO(W) is P(S?A), where the quotient map is given by [a] —
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[@oat]. Hence Ag/PGL(N) is the blow-up of PHom(W, A) / SO(W) = P(5%A)
along the locus of rank 1 quadratic forms P(S?A) ([17] Lemma 3.11) which is
a Cartier divisor. So we proved that

Ags/PGL(N) = P(S%A).

Finally S/PGL(N) is singular only along Ag / PGL(N) and the singularities
are C?"=3/{+£1} by Luna’s slice theorem [20] (1.2.1). Since Dj is the excep-
tional divisor of the blow-up of S/PGL(N) along Ag// PGL(N), we conclude
that Dj is a P?"~“-bundle over P(S2A). O

Proof of (4). By Corollary 4.3, ££NQg is the exceptional divisor of the blow-up
Blg+pHomy (W, T, ()¢ PHom® (W, Tx () / SO(W) and $7. Nz is now the blow-
up of the exceptional divisor along the proper transform of ¢*PHoms (W, T'x ()
J/SO(W). Using the isomorphism (4.1), this is the exceptional divisor of

¢ Blp(sz3)P(5*B) — ¢"P(S*B)
over Gr¥(3,Tx(.1). Since ¢ is a principal PGL(N)-bundle, D1 N Dy = £5 N
Qr/PGL(N) is the exceptional divisor of the blow-up Blp(g23) P(S?B). Be-
cause the exceptional divisor is a Zariski locally trivial P2-bundle over P(5?B)

and P(S?B) itself is a Zariski locally trivial P2-bundle over Gr*(3, Txn), we
proved (4). O

Proof of (5). From the above proof of (3) it follows immediately that X% N

As//PGL(N) is P(S2A) and Dy N Dj is a P2~ bundle over P(S%A) which is
Zariski locally trivial. ]

Proof of (6). As in the above proof of (4), we start with (4.6) and use the
isomorphism (4.1) to see that D; N Dj is the proper transform of P(S3B) in
the blow-up Bl ng)]P’(SzB). This is a Zariski locally trivial P2-bundle over a
Zariski locally trivially P2-bundle over Gr*(3, Tx(n)- ]

Proof of (7). This follows immediately from the proof of (4) and (6). O

From .the above descriptions, it is clear that D; (i = 1,2,3) are normal
crossing smooth divisors.

5. Hodge-Deligne polynomial of D

In this section we prove Lemma 3.4. Recall
2n—-3

Ion-s = {((z:), (yj)) € P23  pon—3 ‘ Z z;y; = 0}.
=0

It is elementary ([8] p.606) to see that

H*(I2n—3; Q)
o Q[a7b]/<a2n—-2’b2n—2’a2n—3 + a2n—4b + a2n——5b2 e 4 b2n—3>,
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where a (resp. b) is the pull-back of the first Chern class of the tautological line
bundle of the first (resp. second) P2"~3. The Zj-action interchanges a and b
and the invariant subspace of H*(I3,,-3; Q) is generated by classes of the form
a'¥’ + a’bt. As a vector space H*(Io,—3;Q) is
(5.1) Q-span{a’t’ [0 <i<2n—3,0<j < 2n —4}
while the invariant subspace is
Q-span{a’t’ 4+ afb* |0 <i < j < 2n — 4}.
The index set {(¢,7)|0 < i < j < 2n — 4} is mapped to its complement in
{(3,7)]0 € i < 2n—3,0 < j < 2n — 4} by the map (4,7) — (j + 1,7). This
immediately implies that
(5.2) P(Izp-3;2) = (1 + 2°) Pt (I3,,_3; 2)
By (5.1) or the observation that I5,_3 is the Zariski locally trivial P2*~%-bundle
over P2?~3, we have
1 - (z2)2n—2 1— (z2)2n-3
1-22 1-22
Because 1+ 22 divides 1_(1222:-2, 1_(1222:—3 also divides P*(I3,_3;2). There-
fore, (3.3) is a direct consequence of (3.2) since P(X[™; 2) has no odd degree
terms by (2.2).
Now let us prove (3.2). Let
3 : DY = PT71(0)/50(2) — A = x5 Xt — A

be the Zariski locally trivial I5,_3-bundle in the proof of Proposition 3.2 (2) in
§4. Recall that DY = DJ/Z;. We have seen in the proof of Proposmon 3.2 (2)
in §4 that there is a Zy-equivariant embedding

(2 D2 — IP’Sxtx[n] (Ll, Lz) Xx[n] szt:lx["] (LQ,L]_),
0 o] (4]

(53) P(Ign_;g; Z) =

where the Zs-action interchanges L, gnd Lo,
Let X (resp. 1) be the pull-back to DJ of the first Chern class of the tautolog-
ical line bundle over PExt! b (L1,L2) (resp PExt! i (L2,£1)). By definition,

A and 7 restrict to ¢ and b respectlvely The Z»- actlon interchanges A and 7.
By the Leray-Hirsch theorem? we have an isomorphism

(5.4) HY (DY) = H3(XY)® H*(Izn-3).

As the pull-back and the cup product preserve mixed Hodge structure, (5.4)
determines the mixed Hodge structure of H*(D3). The Z,-invariant part is

(5.5) H:(DY* = (H (X @ H' (Bn-s)* )@ (B2 ()™ © H (Ian-3)")

2The Leray-Hirsch theorem in [24] p.182 is stated for ordinary cohomology but the state-
ment holds also for compact support cohomology. See the proof in [24] p.195
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where the superscript + denotes the +1-eigenspace of the Zs-action. Because
HX(DY) = H*(DY/Z) = H*(D3)* ([9] Theorem 5.3.1 and Proposition 5.2.3),
E(DY; u,v) is equal to
(5.6) E*(DY;u,v)

E* (C)Cg"], u,v)ET (Ign_3;u,v) + E~ (x{,"]; u, v)E7 (Ion—3;u,v),
where EX(Y;u,v) = 3, 35 o(—1)FRPI(HE(Y)E)uPol.

It is easy to see

P(XI") 2)2 + P(X M 22)

2 b
P(X[; 2)2 — P(XM; 22)

5 .
(Macdonald’s formula). Since X ("] x X" is smooth projective, we have
P(XI"; 2)2 + P(XI; 22)

2
P(XI";2)? - P(XM; 2%)

5 .
Now as 96[ " = Xl x X7l — A and A = X[ s Zg-invariant, by the additive
property of the E-polynomial we have

BT 2, 2) = BEY (X x xI7; 2 2) — B(XT 2, 2)
B P(X["];z) +P(X["];z2)
= > _

PH(XIM « xlnl 2y =

P=(XxMn 5 x5y =

Et(xtl x xtnl. 2 2) =

E'_(X["] X X["];z,z) =

P(X["]; z),

E~(XI; 2,2) = E-(XIM x X[, 2, 2)
P(X["];z)2 — P(X["];z2)
. .

The equation (3.2) is an immediate consequence of the above equations and
(5.6).
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