DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

MEHDI-REZA DARVISHZADEH AND WILLIAM M. GOLDMAN

0. Introduction

A convex \mathbb{RP}^n -structure on a smooth manifold M is a representation of M as a quotient of a convex domain $\Omega \subset \mathbb{RP}^n$ by a discrete group Γ of collineations of \mathbb{RP}^n acting properly on Ω . When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $\mathfrak{P}(M)$ homeomorphic to an open cell of dimension $16(g-1)(\operatorname{Goldman}[2])$. This cell contains the Teichmüller space $\mathcal{T}(M)$ of M and it is of interest to know what of the rich geometric structure extends to $\mathfrak{P}(M)$. In [3], a symplectic structure on $\mathfrak{P}(M)$ is defined, which extends the symplectic structure on $\mathcal{T}(M)$ defined by the Weil-Petersson Kähler form.

The first step in this project is a construction of a Riemannian metric on $\mathfrak{P}(M)$. This metric exists for structures in all dimensions. The basic technique is that a canonically defined Riemannian metric on Ω/Γ defines a Riemannian structure on the moduli space via the Hodge theory of harmonic forms. Using Hodge theory and the canonical Riemannian metric constructed by Koszul [9] and Vinberg [16], we define a Riemannian metric g on $\mathfrak{P}(M)$. In dimension two, this deformation space enjoys a symplectic structure and combining these two structures we define a bundle map J on the tangent bundle $T\mathfrak{P}(M)$ and show that J is an almost complex structure. Thus $(\mathfrak{P}(M), g, J)$ is an almost Kähler

Received October 29, 1995.

¹⁹⁹¹ AMS Subject Classification: 53A15, 53A20, 53C15.

key words and phrases: affine connection, convex projective structure, sharp convex cone, Hessian metric, Weil-Petersson metric, Teichmuller space.

The authors acknowledge support from National Science Foundation grants DMS-9205139, and DMS-9504764.

structure and we conjecture that this is a Kähler structure, that is J is an integrable almost complex structure.

Another result is the following description of $\mathfrak{P}(M)$. Fix $\lambda > 1$ and let A be the multiplicative group of intergral powers of λ . For any manifold M, let M' denote the Cartesian product $M \times S^1$. Let $\frac{\partial}{\partial \theta}$ be the vector field on M' generating the flow

$$\Phi_t: (x,\theta) \longmapsto (x,\theta+t).$$

Let $d\theta$ the closed 1-form on M' defined by the projection $M' \to S^1$. The group \mathcal{D} of diffeomorphisms of M isotopic to the identity acts on M' by

$$h:(x,\theta)\to(h(x),\theta)$$

and hence acts on the space of all affine connections on M'.

THEOREM 1. The deformation space $\mathfrak{P}(M)$ of convex \mathbb{RP}^n -structures on M identifies with the space of \mathcal{D} -orbits of flat torsionfree affine connections ∇ on M' such that:

• $\frac{\partial}{\partial \theta}$ is radiant with respect to ∇ : for any vector field $X \in Vect(M')$,

$$\nabla_X \frac{\partial}{\partial \theta} = X;$$

- $\nabla(d\theta) > 0$;
- Each trajectory of Φ is an closed geodesic affinely isomorphic to a Hopf circle R₊/∧;

1. Deformation space of convex \mathbb{RP}^n -structures

Let M be a smooth 2-manifold. An \mathbb{RP}^n -structure on M is maximal collection $\{(U_{\alpha}, \psi_{\alpha})\}$, such that

- $\{U_{\alpha}\}$, is an open cover of M,
- For each $\alpha, \psi_{\alpha}: U_{\alpha} \to \mathbb{RP}^n$ is a surjective diffeomorphism,
- The change of coordinate are locally projective: If $\{(U_{\alpha}, \psi_{\alpha})\}$ and $\{(U_{\beta}, \psi_{\beta})\}$ are two such coordinate charts, then the restriction of $\psi_{\beta} \circ \psi_{\alpha}^{-1}$ to any connected component of $\psi_{\beta}^{-1}(\psi_{\alpha}(U_{\alpha} \cap U_{\beta}))$ is a projective transformation.

A manifold with an \mathbb{RP}^n -structure is called an \mathbb{RP}^n -manifold. A fundamental fact about \mathbb{RP}^n -structures is the following Development Theorem, due to Ch. Ehresmann in 1936 ([1]).

THEOREM 2. Let M be an \mathbb{RP}^n -manifold and denote its a universal covering space by $p: \tilde{M} \to M$. Let π be the corresponding group of covering transformations.

(1) There exist a projective map dev: $\hat{N} \to \mathbb{RP}^n$ and a homomorphism $h: \pi \to PGL(n+1,\mathbb{R})$ such that for each $\gamma \in \pi$, the following diagram commutes:

$$\begin{array}{ccc} \tilde{M} & \stackrel{\text{dev}}{\longrightarrow} & \mathbb{RP}^n \\ \gamma \Big\downarrow & & & \Big\downarrow h(\gamma) \\ \tilde{M} & \stackrel{\text{dev}}{\longrightarrow} & \mathbb{RP}^n \end{array}$$

(2) If $(\operatorname{dev}', h')$ is another such pair, then there exists a projective transformation $g \in PGL(n+1, \mathbb{R})$ such that $\operatorname{dev}' = g \circ \operatorname{dev}$ and $h' = i_g \circ h$ where

$$i_q: PGL(n+1,\mathbb{R}) \to PGL(n+1,\mathbb{R})$$

denotes the inner automorphism defined by g [4].

An \mathbb{RP}^n -structure on M is called convex if dev is a diffeomorphism of \tilde{M} onto a convex domain in \mathbb{RP}^n .

Let S denote a compact smooth n-manifold. Define

$$\varepsilon = \{(f, M) | f : S \to M \text{ is a diffeomorphism and } M \text{ is an } \mathbb{RP}^n - \text{manifold} \}.$$

Two elements $(f, M), (f', M') \in \varepsilon$ are equivalent if and only if there exists a projective isomorphism $h: M \to M'$ such that $h \circ f$ is isotopic to f'. The set of equivalence classes (denoted By $\mathbb{RP}^n(S)$) has a natural topology making it locally equivalent to Hom $(\pi, PGL(n+1,\mathbb{R}))/PGL(n+1,\mathbb{R})$. In other words there exists a map

$$\operatorname{hol}: \mathbb{RP}^n(S) \to \operatorname{Hom}(\pi, \operatorname{PGL}(n+1, \mathbb{R}))/\operatorname{PGL}(n+1, \mathbb{R})$$

which is a local diffeomorphism. Let $\mathfrak{P}(M)$ denote the subset of $\mathbb{RP}^n(S)$ corresponding to convex \mathbb{RP}^n -structures. $\mathfrak{P}(M)$ is an open set and the restriction of hol to $\mathfrak{P}(M)$ is an embedding of $\mathfrak{P}(M)$ onto an open subset of $\mathrm{Hom}(\pi, PGL(n+1,\mathbb{R}))/PGL(n+1,\mathbb{R})$ ([2]). This open set identifies with an open subset of a real algebraic variety X(M). The Zariski tangent space to X(M) at $\{\phi\}$ is isomorphic to $H^1(\pi, sl(n+1,\mathbb{R})_{Adh})$ which by de Rham's theorem is isomorphic to $H^1(S,\xi)$ where ξ is the flat $sl(n+1,\mathbb{R})$ -bundle over S with holonomy representation $\mathrm{Ad}(h)$. (See [5]).

2. Hessian manifolds

Let M be a (flat) affine manifold. A Riemannian metric g on M is said to be Hessian if for each point p there exists a function f defined on a neighborhood of p such that $\nabla df > 0$. A flat affine manifold provided with a Hessian metric is called a Hessian manifold. (Compare Shima [12], [13]).

An open subset $\Omega \subset \mathbb{R}^{n+1}$ is said to a cone if it is invariant under the group \mathbb{R}^+ of positive homotheties. A convex cone is sharp if it does not contain any full straight line.

The following theorem is due to Koszul [9] and Vey [15]:

THEOREM 3. Let M be a connected Hessian manifold with Hessian metric g. Suppose that admits a closed 1-form α such that $\nabla \alpha = g$ and there exists a group G of affine automorphisms of M preserving α .

- If M/G is quasi-compact, then the universal covering manifold
 of M is affinely isomorphic to a convex domain Ω real affine
 space not containing any full straight line;
- If M/G is compact, then Ω is a sharp convex cone.

In the latter case, M is said to be hyperbolic affine manifold. The construction of an affinely invariant Hessian metric on a sharp convex cone Ω is due to Koszul [9] and Vinberg [16].

Suppose that $(f, M) \in \varepsilon$ corresponds to a convex \mathbb{RP}^n -structure on S as above. In fact M is a quotient Ω/Γ where $\Omega \subset \mathbb{RP}^n$ is a convex domain and $\Gamma \subset \mathrm{PGL}(n+1,\mathbb{R})$ is a discrete group acting properly on Ω . Let $\Omega' \subset \mathbb{R}^3$ be the corresponding cone in affine space $E = \mathbb{R}^3$.

The dual cone Ω^* is the subset of the dual vector space E^* consisting of linear functionals $\psi: E \to \mathbb{R}$ which are positive on Ω' . Recall the Koszul-Vinberg characteristic function: For $\mathbf{x} \in \Omega'$, define

$$f(x) = \int_{\Omega^*} e^{-\psi(x)} d\psi$$

Then f satisfies

(1)
$$f(\gamma x) = \det(\gamma)^{-1} f(x)$$

for any $\gamma \in \operatorname{Aut}(\Omega')$ and the Hessian $d^2 \log f$ is a positive definite symmetric bilinear form on E invariant under $\operatorname{Aut}(\Omega')$.

Now consider the section

$$k: \Omega \to \Omega'$$

 $k([p]) \mapsto f(p)^{1/(n+1)}p$

By (1), k is well-defined and $k(\Omega) = f^{-1}$ (1).

$$g_{\Omega} = k^*(d^2 \log f) = Dk^*(d \log f)$$

is a Riemannian metric on Ω invariant under Γ . The closed 1-form

$$\alpha_{\Omega} = k^*(d\log f)$$

is also invariant under Γ , and satisfies

$$D\alpha_\Omega=g_\Omega$$

Hence $k^*(d^2 \log f)$ defines a Hessian metric on Ω/Γ .

3. A Weil-Petersson metric on $\mathfrak{P}(M)$

A convex \mathbb{RP}^n -structure on S determines a canonical metric on S, so there exists a Weil-Petersson metric on $\mathfrak{P}(M)$, defined as follows. Let $[M] \in \mathfrak{P}(S)$. From § 1,

$$T_{[M]}\mathfrak{P}(S) = H^1(M;\xi)$$

The space $\mathcal{A}^1(M,\xi)$ of all ξ -valued 1-forms on M consists of sections of the vector bundle $\operatorname{Hom}(TM,\xi)$. For every $x \in f^{-1}(1)$, the symmetric bilinear form $(d^2 \log f)_x$ defines an inner product

(2)
$$\operatorname{Hom}(\mathbb{R}^3, \mathbb{R}^3) \cong \mathbb{R}^3 \otimes (\mathbb{R}^3)^*$$

and therefore induces a Riemannian metric on the bundle ξ . If ϕ, ψ are sections of ξ , then the induced inner product is

$$d^2 \log f(\phi, \psi) = \operatorname{trace}(\phi \circ \tilde{\psi})$$

where $\tilde{\psi}$ is the adjoint of ψ with respect to $d^2 \log f$ ([7]).

On the other hand the Hodge star operator associated to the metric on M defines a metric on $\mathcal{A}^1(M)$. The metric on M induces a positive definite inner product g on $\mathcal{A}^1(M, sl(n+1, \mathbb{R})_{Adh})$. Let

$$\sigma \otimes \phi, \sigma' \otimes \phi' \in \mathcal{A}^1(M, sl(n+1, \mathbb{R})_{Adh})$$

where $\sigma, \sigma' \in \mathcal{A}^1(M)$ and ϕ', ϕ are sections of $sl(n+1, \mathbb{R})_{Adh}$). Then (see [17])

$$g(\sigma \otimes \phi, \sigma' \otimes \phi') \int_{M} (\sigma \wedge *\sigma') \operatorname{trace}(\phi \circ \tilde{\phi}')$$

where $\tilde{\phi}'$ denotes the adjoint of ϕ' as in (2).

This metric induces a metric g on the cohomology $H^1(M;\xi)$ as follows: Consider the operator δ adjoint to exterior differential d with respect to this inner product, and the corresponding Laplacian Δ on-1-forms:

$$\Delta = d\delta + \delta d$$

The kernel $\mathcal{H}^1(M;\xi)$ of Δ and the images of $d: \mathcal{A}^0(M;\xi) \to \mathcal{A}^1(M;\xi)$ and $\delta: \mathcal{A}^2(M;\xi) \to \mathcal{A}^1(M;\xi)$ decompose the vector space of 1-forms as an orthogonal direct sum

$$\mathcal{A}^1(M;\xi) = \mathcal{H}^1(M;\xi) \oplus d\mathcal{A}^0(M;\xi) \oplus \delta\mathcal{A}^2(M;\xi)$$

Consequently each de Rham cohomology class contains a unique harmonic representative. Define the pairing

$$g: \mathcal{H}^1(M;\xi) \times \mathcal{H}^1(M;\xi) \to \mathbb{R}$$

as the tensor product of the inner product on exterior differential forms and the metric on ξ induced from $x^*d^2 \log f$.

4. A symplectic form on $\mathfrak{P}(M)$

Now suppose n=2. As in §1, the restriction of hol: $\mathbb{RP}^n(S) \to \text{Hom } (\pi, \operatorname{PGL}(n+1,\mathbb{R}))/\operatorname{PGL}(n+1,\mathbb{R})$ to $\mathfrak{P}(S)$ embeds $\mathfrak{P}(S)$ as an open subset of $\operatorname{Hom}(\pi, \operatorname{PGL}(n+1,\mathbb{R}))/\operatorname{PGL}(n+1,\mathbb{R})$. On the other hand the trace form

$$B: sl(n+1,\mathbb{R}) \times sl(n+1,\mathbb{R}) \to \mathbb{R}$$

$$B(X,Y) = \operatorname{trace}(XY)$$

is an Ad-invariant bilinear form, so defines a bundle pairing $\xi \times \xi \to \mathbb{R}$ The natural dual pairing

$$w: H^1(M;\xi) \times H^1(M;\xi) \to H^2(M;\mathbb{R}) \cong \mathbb{R}$$

defined by the cup-product on M and with B as a coefficient pairing defines a symplectic form on $H^1(M;\xi)$. The induced symplectic structure on

$$\operatorname{Hom}(\pi,\operatorname{PGL}(n+1,\mathbb{R}))/\operatorname{PGL}(n+1,\mathbb{R})$$

gives a symplectic structure on $\mathbb{RP}^n(S)$ and in particular one on $\mathfrak{P}(S)$. (See [5] and, for a more analytic treatment, [3].)

As in §1, identify $H^1(\pi; sl(n+1, \mathbb{R}))$ with $H^1(M; \xi)$. Let $\alpha, \alpha' \in H^1(M; \xi)$ and let $\sum_{i=1}^k \sigma_i \otimes \phi_i$ and $\sum_{i=1}^l \sigma_i' \otimes \phi_i'$ be harmonic forms representing α, α' respectively. Then

$$\sum_{1 \leq i \leq k, 1 \leq j \leq l} (\sigma_i \wedge \sigma'_j) \otimes B(\phi_i, \phi'_j)$$

is an exterior 2-form and its integral defines the symplectic structure on $\mathfrak{P}(S)$:

$$w(\alpha,\alpha') = \int_{M} \sum_{1 \leq i \leq k, 1 \leq j \leq l} (\sigma_i \wedge \sigma'_j) \otimes B(\phi_i,\phi'_j)$$

5. An almost complex structure on $\mathfrak{P}(M)$

Comparing the previous Riemannian and symplectic structures yields an almost complex structure on $\mathfrak{P}(M)$ as follows. Define an operator J on $\mathcal{A}^1(M;\xi)$ by

$$J(\sigma\otimes\phi)=-*\sigma\otimes\tilde{\phi}$$

where

$$*: \mathcal{A}^1(M) ou \mathcal{A}^1(M)$$

is the Hodge *-operator and $\tilde{\phi}$ denotes the adjoint of ϕ as in (2). For n=2, the Hodge *-operator satisfies

$$* \circ * = -I$$

and since the adjoint operation

$$\phi \longmapsto \tilde{\phi}$$

has order two, it follows that

$$J \circ J = -I$$

that is, J, defines an almost complex structure.

LEMMA 4. The Riemannian metric g, the symplectic structure w, and the almost complex structure J are related by

- (1) $w(\alpha, \alpha') = g(\alpha, J\alpha')$
- (2) $q(\alpha, \alpha') = q(J\alpha, J\alpha')$

for $\alpha, \alpha' \in \mathcal{A}^1(M; \xi)$.

Proof. For both parts, it suffices to consider the case when $\alpha = \sigma \otimes \phi$ and $\alpha' = \sigma' \otimes \phi'$ where $\sigma, \sigma' \in \mathcal{A}^1(M)$ and σ, σ' are sections of ξ .

$$\begin{split} g(\alpha,J\alpha') = & g(\sigma\otimes\phi,*\sigma'\otimes\tilde{\phi}') \\ = & \int_{S}\sigma\wedge*(-*\sigma')\operatorname{trace}(\phi\circ\phi) \\ = & \int_{S}\sigma\wedge\sigma'\operatorname{trace}(\phi\circ\phi) \\ = & w(\alpha,\alpha') \end{split}$$

proving (1). For (2), use the facts that g is symmetric, w is alternating and (1):

$$g(J\alpha, J\alpha') = w(J\alpha, \alpha')$$

$$= -w(\alpha', J\alpha)$$

$$= -g(\alpha', JJ\alpha)$$

$$= g(\alpha', \alpha)$$

$$= g(\alpha, \alpha')$$

as desired \square

Thus we have proved that $(\mathfrak{P}(M), g, w, J)$ is an almost Kähler structure. We conjecture that J is an integrable almost complex structure, that is, this almost Kähler structure is an actual Kähler structure.

6. Affine connections

Now we shall describe an explicit construction associating to a convex \mathbb{RP}^n -manifold M a hyperbolic affine n+1-manifold, in fact a whole family of compact hyperbolic affine n+1-manifolds diffeomorphic to $M \times S^1$.

For each $\lambda \in \mathbb{R}^+$, let h_{λ} denote the homothety

$$S \times \mathbb{R}^+ \longrightarrow S \times \mathbb{R}^+$$

$$(s,t) \longmapsto (s,\lambda t)$$

Let dt denote the 1-form on $S \times \mathbb{R}^+$ pulled back from dt on \mathbb{R}^+ by projection

$$t: S \to \mathbb{R}^+ \to \mathbb{R}^+.$$

The $t^{-1}dt$ is a 1-form on $S \times \mathbb{R}^+$ invariant under the homotheties above.

LEMMA 5. Let S be a closed manifold with convex \mathbb{RP}^n -structure. Then there exit a radiant affine manifold M, a diffeomorphism

$$f: S \times \mathbb{R}^+ \to M$$

and an exact 1-form α_M on M. Let

$$\alpha_S = (f^{-1})^* \alpha_M$$

be the corresponding 1-form on $S \times \mathbb{R}^+$. Then

$$\alpha_S = t^{-1}dt, \qquad (h_\lambda)^*\alpha_S = \lambda \alpha_S$$

Proof. The convex \mathbb{RP}^n -structure on S induces a convex \mathbb{RP}^n -structure on \tilde{S} . Let x be a base-point in S. Let $\Pi: \tilde{S} \to S$ be the corresponding universal covering space and π the corresponding group of deck transformations. By the Development Theorem there exist a projective map dev and a homomorphism ρ such that dev is equivariant with respect to ρ . Let Ω' be the corresponding affine cone. Projectivization defines the structure of a principal \mathbb{R}^+ -bundle $\Omega' \to \Omega$. By definition, dev is a diffeomorphism onto a convex domain Ω . By pulling back this bundle via dev, we obtain a principal \mathbb{R}^+ -bundle. The open cone Ω' whose projectivization is Ω is the total space of a principal \mathbb{R}^+ -bundle. Pulling back this bundle via dev produces a principal \mathbb{R}^+ -principal bundle over M. The affine structure on Ω' induced from $\mathbb{R}^{n+1} - \{0\}$, induces an affine structure on S'. There exists a lift

$$\bar{h}:\pi_1(S)\to \mathrm{SL}(n+1,\mathbb{R})$$

of the homomorphism $h: \pi_1(S) \to \operatorname{PGL}(n+1,\mathbb{R})$ so that $\pi_1(S)$ acts affinely on S'. Clearly this action is proper and free. Hence the total space

$$\hat{S} = S'/\pi_1(S) \approx S \times \mathbb{R}^+$$

of a principal \mathbb{R}^+ -bundle over S with holonomy representation h admits a radiant affine structure. The radiant vector field $\rho_{\hat{S}}$ generates the (fiberwise) affine action of \mathbb{R}^+ on \hat{S} , which is given locally in coordinates by homotheties. On the other hand every principal \mathbb{R}^+ -bundle is trivial. Choose any $\lambda > 1$. The cyclic group $\langle \lambda \rangle \subset \mathbb{R}^+$ acts properly and freely by affine transformations on \hat{S} . The resulting affine manifold $\hat{S}/\langle \lambda \rangle$ is homeomorphic to $S \times S^1$. Corresponding to a convex real projective structure on S is a whole family of radiant affine structures on $S \times S^1$, one for each λ . The radiant vector field is, in fact, the

vector field on $S \times S^1$ in the direction of S^1 , which we denote by $\frac{\partial}{\partial \theta}$. Consider the characteristic function $f: \Omega' \to \mathbb{R}$ of Ω' . The logarithmic differential d log f is a closed 1-form on Ω' which is:

- positive definite;
- invariant under Aff(Ω')

Then by the above construction, there exists ϵ closed 1-form $\tilde{\alpha}$ on S' such that $\nabla \hat{\alpha} > 0$ and is invariant under $\pi_1(S)$ and $\langle \lambda \rangle$. Consequently, there exists a closed 1-form α on $S \times S^1$ such that $\nabla \alpha > 0$.

With the notation of Lemma 5.

LEMMA 6. α represents the cohomology class of S^1 , i.e. if π_2 : $S \times S^1 \to S^1$ denotes projection then $[\alpha] = \pi_2^*[S^1]$ where $[S^1] \in H^1(S^1)$ denotes a generator.

The characteristic function on Ω' induces a function on S' which we again denote by log f. The fundamental group of S naturally acts on S' by \tilde{h} . For all $\gamma \in \Gamma = \tilde{h}(\pi_1(S'))$.

$$\log f \circ \gamma = \log f - \log \det(\gamma)$$

But for $\gamma \in \pi_1(S')$, $\det(\gamma) = 1$, so $\log f = \log f \circ \gamma$. It follows that $\log f$ defines a function $l: \hat{S} \to \mathbb{R}$ such that $\alpha = dl$ is exact. Let $\Pi_{\lambda}: \hat{S} \to S_{\lambda} = \hat{S}/\langle \lambda \rangle$ denote projection and let $\hat{\alpha} = \Pi_{\lambda}^* \alpha$. There is a function l_{λ} related to l on S_{λ} such that $\hat{\alpha} = dl_{\lambda}$. The cyclic group $\langle \lambda \rangle$ is generated by

$$D_{\lambda}:z\longmapsto\lambda_{z}$$

and

$$\log(f \circ D_{\lambda}) = \log f - (n+1)\log \lambda$$

The α is a 1-form on $S \times S^1$. For every $\gamma \in \pi_1(S \times S^1) \cong \pi_1(S) \times \mathbb{Z}$,

$$\int_{\gamma} \alpha = \int_{\tilde{\gamma}} d\log f = \log f(\tilde{\gamma}\tilde{p}) - \log f(\tilde{p}) = -\log \det(\gamma)$$

where $\tilde{\gamma}$ is the lifting of γ and \hat{p} is an arbitrary point in S' whose projection by $S' \approx S \times S^1 \to S^1$ is the base point of S^1 . Now

$$S'/\Gamma = \hat{S} \approx S \times \mathbb{R}^+$$

and $\pi_1(S) \cong \pi_1(\hat{S}) \cong \Gamma$ and for all $\gamma \in \Gamma$, the period of α around γ is zero. Also $\langle \lambda \rangle \subset \pi_1(S \times S^1)$, and $\forall \gamma \in \Gamma$ the period of α is zero. So by using the Hurewicz isomorphism

$$H^1(W, \mathbb{R}) \cong \operatorname{Hom}(H_1(W, \mathbb{Z}), \mathbb{R})$$

 $\cong \operatorname{Hom}(\pi_1(W), \mathbb{R})$

for $S \times S^1$, we have $[\alpha] = \pi_2^*[S^1]$.

Let $\frac{\partial}{\partial \theta}$ be the vector field on $S \times S^1$ in the direction of S^1 , i.e. the infinitesimal generator of the flow:

$$\Theta_t:(s,u)\longmapsto(s,u+t)$$

for $u \in \mathbb{R}/\mathbb{Z}$. Let $d\theta$ be the 1-form dual to $\frac{\partial}{\partial \theta}$, i.e. $d\theta \frac{\partial}{\partial \theta} = 1$. Let C denote the set of all affine connections ∇ on $S \times S^1$ such that:

- ∇ is flat and torsionfree;
- $\frac{\partial}{\partial \theta}$ is radiant with respect to ∇ , i.e.

$$\nabla_X(\frac{\partial}{\partial\theta}) = X$$

for all vector fields X on $S \times S^1$.

• $\nabla d\theta > 0$.

Before the main theorem, we prove the following lemma, which asserts that a radiant vector field is affine.

LEMMA 7. Let ∇ be a flat torsionfree connection on N. Suppose ρ is a vector field on N and $\{\Theta_t\}_{t\in\mathbb{R}}$ be its flow. If ρ is radiant with respect to ∇ , then ∇ is invariant under Θ_t .

Proof. Define a derivation $A_{\rho} = L_{\rho} - \nabla_{\rho}$, where L_{ρ} is Lie derivative with respect to ρ . So

$$A_{\rho}(X) = L_{\rho}(X) - \nabla_{\rho}(X) = [\rho, X] - (\nabla_{X\rho} + [\rho, X] + T(\rho, X)) - \nabla_{X\rho} - T(\rho, X)$$

since ρ is radiant and the torsion T=0. Then $A_{\rho}(X)=-X$, that is, $A_{\rho}=-I$. By Prop. 2.6 of page 235 of [8], the vector field ρ is an

infinitesimal affine transformation if and only if for all vector field Y on N

$$\nabla_Y(A_n) = R(\rho, Y)$$

where R is the curvature tensor. But $\nabla_Y(A_\rho) = \nabla_Y(-I) = 0$ (again since ∇ is torsionfree) and R = 0 (since ∇ is flat). Thus ρ is an infinitesimal affine transformation. Now by prop. 1.4, of [8] (p.228), ∇ is invariant with respect to Θ_t as desired. \square

Let S be a closed surface with $\chi(S) < 0$ and fix a basepoint $p \in S$. Let ε denote the set of all pairs (f, M) where $f: S \to M$ is diffeomorphism and M is a convex \mathbb{RP}^n -manifold. Define a homomorphism

$$T: \mathrm{Diff}^0(S) \to \mathrm{Diff}(S \times S^1)$$

by T(h)(s,u)=(h(s),u). If h fixes the basepoint $p\in S$, then T(h) fixes the basepoint $(p,0)\in S\times S^1$.

THEOREM 8. The natural map

$$\Phi: \varepsilon \to \mathcal{C}$$

is equivariant with respect to T and induces an isomorphism

$$\mathfrak{P}(S) \to \mathbb{C}/T(Diff^0(S))$$

By Lemma 5, corresponding to every $(f, M) \in \varepsilon$ is an element of C. Conversely, let $\nabla \in C$ and

$$\Omega_p \subset T_{(p,0)}(S imes S^1)$$

be the domain of the exponential map. By Koszul's theorem, Ω_p is a sharp convex cone and $\exp:\Omega_p\to S\times S^1$ is a covering map. Consider the projection map $\Pi:S\times S^1\to S^1$. It is clear that $\frac{\partial}{\partial \theta}$ is transverse to level sets of Π . Lift the flow of $\frac{\partial}{\partial \theta}$ to Ω_p (denoting it by $\frac{\hat{\partial}}{\partial \theta}$). The 1-form $\alpha=\exp^*(d\theta)$ is closed. $H^1(\Omega)=0$ implies that there exists a function $\phi:\Omega\to\mathbb{R}$ such that $\alpha=d\phi$. Level sets of ϕ are transverse to the flow of $\frac{\hat{\partial}}{\partial \theta}$ because the tangent space of a level set of an arbitrary point x is the kernel of $d\phi=\alpha$ at x and

$$1 = (d\theta)(\frac{\partial}{\partial \theta}) = (d\theta)(\exp{\frac{\tilde{\partial}}{\partial \theta}}) = (\exp^* d\theta)(\frac{\tilde{\partial}}{\partial \theta}) = d\phi(\frac{\tilde{\partial}}{\partial \theta})$$

Thus each level set $\phi^{-1}(c)$ is a cross-section of $\frac{\partial}{\partial \theta}$. On the other hand, Ω_p is a convex cone and the projectivization of $\phi^{-1}(c)$ is a convex domain in \mathbb{RP}^n . Now

$$\pi_1(S \times S^1) \cong \pi_1(S) \times \mathbb{Z}$$

and

$$\pi_1(S) \hookrightarrow SL(3,\mathbb{R})$$

so $\phi^{-1}(c)/\Gamma$ is a convex \mathbb{RP}^n -structure on S. The commutativity of the diagram:

$$\begin{array}{ccc} \varepsilon & \stackrel{\Phi}{\longrightarrow} & \mathcal{C} \\ \downarrow h & & \downarrow T(h) \\ \varepsilon & \stackrel{\Phi}{\longrightarrow} & \mathcal{C} \end{array}$$

is obvious from the above construction and the proof of Lemma 5, that is, Φ is equivariant with respect to T, and induces the isomorphism

$$\mathfrak{P}(S) \to C/T(\operatorname{Diff}^0(S)).$$

References

- Ehresmann, Ch., Sur les espaces localement homogenes, L'ens. Math. 35 (1936), 317-333.
- Goldman, W., Convex real projective structures on compact surfaces, J. Differential Geom 31 (1990), 791-845.
- 3. _____, The symplectic geometry of affine connections on surfaces, J. für die Reigne und Angewandte Math. 407 (1990), 126-159.
- 4. _____, Projective geometry on manifolds, Lecture notes, University of Maryland, Spring, 1988.
- 5. _____, The symplectic nature of fundamental group of surfaces, Adv. Math. 54 (1984), 200-205.
- 6. W. H. Greub, Multilinear algebra, Springer-Verlag, New-York, 1967.
- W. H. Greub, S. Halperin, R. Vanstone, Connections, Curvature, and Cohomology, Volume 1, Academic Press, New York etc, 1972
- 8. Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry. Volume 1, Interscience Tracts in Pure and Applied Mathematics 15 (1963), John Wiley & Sons, New York-London.
- 9. Koszul, J. L., Varietes localement plates et convexité, Osaka J. Math. 2 (1965), 285-290.

- Déformations des connexions localement plates, Ann. Inst. Fourier. Grenoble 18 (1968), 103-114.
- Shima, H., Hessian manifolds and convexity in "Manifolds and Lie groups, Papers in honor of Yozô Matsushima", Progress in Mathematics 14 (1981), 385-392 Birkhäuser, Boston-Basel.
- 12. _____, Homogeneous Hessian manifolds, Ann. Inst. Fourier, Grenoble 30.3 (1980).
- On certain locally flat homogeneous manifolds on solvable Lie groups, Osaka J. Math. 13 (1976), 213-229.
- M. Spivak, A comprehensive introduction to differential geometry. Volume 4, Publish or Perish, 1975.
- Vey, J., Sur les automorphismes affines des ouverts convexe saillants, Ann. Seuola Norm. Sup. Pisa 24 (1970), 641-665.
- F. B. Vinberg, Homogeneous convex cones, Trans. Moscow Math. Soc. 12 (1963), 340-363.
- R. O. Wells, Differential analysis on complex manifolds, Springer Verlag, New York, 1980.

Mehdi-Reza Darvishzadeh Department of Mathematics Tehran University Tehran, IRAN

William M. Goldman Department of Mathematic University of Maryland College Park, MD 20742 USA

E-mail: wmg@math.umd.edu