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DEFORMATION SPACES OF CONVEX
REAL-PROJECTIVE STRUCTURES AND
HYPERBOLIC AFFINE STRUCTURES

MEHDI-REZA DARVISHZADEHR AND WILLIAM M. GOLDMAN

0. Introduction

A convex RP"-structure on a smooth manifold M is a representation
of M as a quotient of a convex domain Q C RP" by a discrete group
[ of collineations of RP" acting properly on Q. When M is a closed
surface of genus ¢ > 1, then the equivalence clesses of such structures
form a moduli space P(M ) homeomorphic to ar: open cell of dimension
16(g-1){ Goldman [2]). This cell contains the Teichmiiller space T (M)
of M and it is of interest to know what of the r ch geometric structure
extends to P(M). In [3], a symplectic structwe on P(M) is defined.,
which extends the symplectie structure on 7{Af) defined by the Weil
Petersson Kahler form.

The first step in this project is a construction of a Riemannian metric
on P(M ). This metric exists for structures in all dimensions. The basic
technique is that a canonically defined Riemanuian metric on Q/T de-
fines a Riemannian structure on the moduli space via the Hodge theory
of harmonic forms. Using Hodge theory and the canonical Ricmannian
metric constructed by Koszul [9] and Vinberg [16]. we define a Rie-
mannian wmetric g on PB(M ). In dimension two, this deformation space
enjoys a symplectic structure and combining these two structures we
define a bundle map J on the tangent bundle T58( M) and show that J
is an almost complex structure. Thus (P(M). g. J) is an almost Kahler
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structure and we conjecture that this is a Kahler structure, that is J
is an integrable almost complex structure.

Another result is the following description of ‘B(/4). Fix A > 1 and
let A be the multiplicative group of intergral powers of A\. For any
manifold M, let M' denote the Cartesian product Af x S'. Let (% be
the vector field on M’ generating the flow

D, (x,0) > (x,0 +1).

Let df the closed 1-form on M' defined by the projection M' — S!.
The group D of diffeomorphisms of M isotopic to the identity acts on
M' by

h:(x,0)— (h(z),0)

and hence acts on the space of all affine connections on M'.

THEOREM 1. The deformation space PB(M) of convex RP"-structures
on M identifies with the space of D-orbits of flat torsionfree affine con-
nections V on M' such that:

o -2 is radiant with respect to V: for any vector field X € Vect

EY]
(M"),
15}
— = X
V. 2 ;
o V(df)>0;

e FEach trajectory of @ is an closed geodesic affinely isomorphic
to a Hopf circle Ry /A;

1. Deformation space of convex RP"-structures

Let M be a smooth 2-manifold. An RP"-structurc on M is maximal
collection {(U,, ¥4 )}, such that

o {U,}. is an open cover of M.

e For each a,, : Uy — RP" is a surjective diffeomorphism,

e The change of coordinate are locally projective : If {(Ua.%'a)}
and {(U3.v¥3)} are two such coordinate charts, then the re-
striction of u’),gou”;’ to any connected component of u’rgl(u’\{,(l,f”aﬂ
Ujs)) is a projective transformation. ’
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A manifold with an RP"-structure is called an RP"-manifold. A
fundamental fact about RP"-structures is the following Development
Theorem, due to Ch. Ehresmann in 1936 ([1]).

THEOREM 2. Let M be an RP"-manifold and denote its a universal
covering space by p - M — M Let m be the corresponding group of
covering transformations.

(1) There exist a projective map dev : M — RP" and a homo-
morphismn h @ # ~— PCGL{n 4+ 1,R} such that for each v € 7.
the following diagram -ommutes:

- dev
M -—— RP"
W’J Jh(ﬁ)
M —— RP"
dev

(2) If (dev',R') is another ruch pair, then there exists a projective
transformation g € PGL(n+ 1,R) such that dev' = godev and
h' =i, 0h where

tg : PGL(n +1,R) — PGL(n - 1,R)
denotes the inner automorphism defined by g [4].

An RP"-structure on M is called convex if dev is a diffeomorphism
of M onto a convex domain in RP".
Let § denote a compact smooth n-manifold. Define

e ={(f.M)|f:§ — M is a diffeomcrphism and

M is an RP" — manifold}.

Two elements (f, M), (f',M') € ¢ are equivalent if and only if there
exists a projective isomorphismi A : M — M’ such that h o f is iso-
topic to f'. The set of equivalence classes (denoted By RP"(S)) has
a natural topology making it locally equivalen to Hom (7. PGL(n +
1.R))/PGL{n + 1.R). In other words there ex:sts a map

hol : RP"(S) — Hom(x, PGL(n + 1,R))/PGL(n + 1.R)
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which is a local diffeomorphism. Let PB(M) denote the subset of
RP"(S) corresponding to convex RP"-structures. P(M) is an open
set and the restriction of hol to P(M) is an embedding of P(M)
onto an open subset of Hom(x, PGL(n + 1,R))/PCL(n + 1,R) ([2]).
This open set identifies with an open subset of a real algebraic variety
X(M). The Zariski tangent space to X(M) at {¢} is isomorphic to
H' (7w, slin + 1,R) 44x) which by de Rham’s theoren is isomorphic to
H'(S,¢) where € is the flat sl(n + 1.R)-bundle over S with holonomy
representation Ad(h). (See [5]).

2. Hessian manifolds

Let M be a (flat) affine manifold. A Riemannian metric ¢ on M is
said to be Hessian if for each point p there exists a function f defined on
a neighborhood of p such that vdf > 0. A flat affine manifold provided
with a Hessian metric is called a Hessian manifold. (Compare Shima
[12], [13)).

An open subset @ C R™"! is said to a cone if it s invariant under
the group R™ of positive homotheties. A convex cone is sharp if it does
not contain any full straight linc.

The following theorem is due to koszul [9] and Vey [15]:

THEOREM 3. Let M be a connected Hessian manifold with Hessian
metric g. Suppose that admits a closed 1-form « such that Va = g
and there exists a group G of affine automorphisms of M preserving «.

o If M /G is quasi-compact, then the universal covering manifold
of M is affinely isomorphic to a convex dornain ) real affine
space not contamning any ful! straight line;

o If M/G is compact, then Q is a sharp convex cone.

In the latter case, M is said to be hyperbolic affine manifold. The
construction of an affinely invariant Hessian metric on a sharp convex
cone {} is due to Koszul [9] and Vinberg [16].

Suppose that (f, M) € ¢ corresponds to a convex RP"-structure on
S as above. In fact M is a quotient {2/T where Q C IRP}”" is a convex
domain and I' © PGL(n + 1,R) is a discrete group acting properly on
2. Let Q' C R? be the corresponding cone in affite space E = R®.
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The dual cone 2* is the subset of the dual veeror space E7 consisting

of linear functionals v : £ — R which are positive on ', Recall the
Koszul-Vinberg characteristic fanction: For x ¢ Q. define

o [ vt
SO

(1) flya) = det(v) 7' f(r)

Then f satisfies

for any v € Aut(Q') and the Hessian d? log 7 is a positive definite
symmetrie bilinear form on E invariant under aut(Q’).
Now consider the section

ko
Mlplh e o)/t
By (1). k is well-defined and k(12) = f~! (1).
ga = k*(d*log f) = Dk*(dlos f)

1s a Riemannian metric on ) invariant under I'. The closed 1-form

g = k¥ (dlog f)
1s also mvariant under I', and setisfies

D g = gg

Hence &*(d?log f) defines a Hessian metric on /T

3. A Weil-Petersson metric on B(M)

A convex RP"-structure on & determines a canonical metric on S,
so there exists a Weil-Petersson metric on PB(A), defined as follows.
Let [M] e B(S). From § 1.

TA ,\1]‘13(5 = H ! (AI f)
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The space A(M., ) of all £-valued 1-forms on M consists of sections of
the vector bundle Hom(TM, £). For every z € f~'(1), the symmetric
bilinear form (d?log f), defines an inner product

(2) Hom(R?* R*) = R® @ (R*)*

and therefore induces a Riemanmnian metric on the bundle £. If ¢,¢
are sections of £, then the induced inner product is

d*log f(6,4) = trace(¢ o )

where ¥ is the adjoint of ¥ with respect to d?log f ([7]).

On the other hand the Hodge star operator associated to the metric
on M defines a metric on A!'(M). The metric on M induces a positive
definite inner product ¢ on A'(M,sl(n + 1,R) aqn). Let

a @ ¢,0', ) ¢, &« A](\I, sl{n + 1-,R)Adh)

where 0,0’ € A'(M) and ¢', ¢ are sections of sl(n + 1,R)a4x). Then
(see [17])

glc 2 ¢,0 @ 65')/ (o A xa') trace(¢ > ¢')
M

where ¢/ denotes the adjoint of ¢’ as in (2).

This metric induces a metric ¢ on the cohomology H'(M;¢) as fol-
lows: Consider the operator é adjoint to exterior differential d with
respect to this inner product, and the corresponding Laplacian A on-
1-forms:

A =dt+ 6d
The kernel H'(M;€) of A and the images of d : A°(M;€) — A'(M;§)
and 6 1 A2(M:;€) — AY(M;€) decompose the vector space of 1-forms
as an orthogonal direct sum

ANM: €)= HU(M; €) & dA (M €) & 6 AX(M; €)

Consequently each de Rham cohomology class contains a unique har-
monic representative. Define the pairing

g HYM;€) x HY(M;£) - R

as the tensor product of the inner product on extericr differential forms
and the metric on ¢ induced from 2*d* log f.
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4. A symplectic form on P(A)

Now suppose n = 2. As in §1. the restrict.on of hol : RP*(S) —
Hom (7, PGL (n + 1,R))/ PGL (n + LR) to P(S) embeds PB(S) as

an open subset of Hom(w, PGL (n + LLR))/ FGL (n + 1,R). On the

other hand the trace form

Bislin+ 1L.R) xsl(n+1.R) — R
B(X.Y) = trace(XY)

is an Ad-invariant bilinear form:, so defines a bundle pairing £ x £ —» R
The natural dual pairing

w: H'(M;€) x HYM: &) - HY(M:R)=R

defined by the cup-product on A1 and with B as a coeficient pairing de-
fines a symplectic form on H'(M: ¢). The induced symplectic structure
on

Hom(#,PGL(n + 1,R))/PGL{n + 1.R)

gives a symplectic structure on RP"(S) and in particular one on B(.5).
(See [5] and, for a more analytic treatment, [3].)

As in §1, identify H'(7;sl(n + 1L.R)) with AYM;€). Let a.a' ¢
HY(M:¢) and let Zle 7; & ¢; and Zf:] ol & ¢! be harmonic forms
representing «, a’ respectively. Then

Y (i Ad)) @ Bl o))

1<k <<t

1s an exterior 2-form and its integral defines th- symplectic structure

on P(S) :

“y(a’(}") = / }: (O'i/\ UJ/) QXB(QDIOI;)
A ‘

Tici<kai<<t
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5. An almost complex structure on P(M)

Comparing the previous Riemannian and symplectic structures yields
an almost complex structure on P(M) as follows. Define an operator

J on AY(M;¢€) by
(3) Jo@e)=-*08¢
where
«: AYM) - AHM)
is the Hodge *-operator and & denotes the adjoint of ¢ as in (2). For
n = 2, the Hodge *-operator satisfies

x0ox= —]

and since the adjoint operation

¢r— ¢
has order two, it follows that
JodJ==—1

that is, J, defines an almost complex structure.

LEMMA 4. The Riemannian metric g, the symplectic structure w,
and the almost complex structure J are related by
(1) w(e,a") = gla,Ja')
(2) gla,a') =g(Ja, Ja')
for a,a' € A'(M;€).

Proof. For both parts, it suffices {o consider the case when o« = o0& ¢
and o' = o' @ ¢' where 0,0’ € A'(M) and 0,0’ are sections of {.

o® ¢, x0' &)

—

gla, Ja') =g

o A x(—xo') trace(¢ 2 @)

= | o Ao trace(d o @)

=w(a,a’)
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proving (1). For (2). use the facts that g is symmetric, w is alternating
and (1):
g(Ja. Ja') =w(Ja, o)
= —w(a', Ja)

=—g(a', JJai

as desired O

Thus we have proved that (Pi M), g,w, J) is an almost Kahler struc-
ture. We conjecture that J is an integrable almost complex structure.
that is, this almost Kahler structure is an actual Kahler structure.

6. Affine connections

Now we shall describe an explicit construction associating to a con-
S g

vex RP"-manifold M a hyperbolic affine n 4 1-manifold, in fact a whole

family of compact hyperbolic affine n 4+ 1-manifolds diffeororphic to

AI ks SN’.

For each A € R™. let hy denote the homothety
SxR"— S xR*

('“at) i (8? /\f)

Let dt denote the 1-form on S x R pulled beck from dt on Rt by

projection

t:S>R" > RT.
The 17 'dt is a 1-form on S x Rt invariant under the homotheties above.

LEMMA 5. Let S be a closed manifold with onvex RP"-structure.
Then there exit a radiant affine manifold M, a diffeomorphism

f:S<xRt - M
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and an exact 1-form aa on M. Let

as=(f ")an
be the corresponding 1-form on § x Rt. Then

ag =t 1dt, tha)fas = dag

Proof. The convex RP"-structure on S induces a convex RP"-struct-
ure on S. Let z be a base-point in S. Let I : § > § be the corre-
sponding universal covering space and 7 the corresponding group of
deck transformations. By the Development Theoren: there exist a pro-
jective map dev and a homomorphism p such that dev is equivariant
with respect to p. Let ' be the corresponding affine cone. Projec-
tivization defines the structure of a principal R*-bundle Q' — Q. By
definition, dev is a diffeomorphism onto a convex domain . By pulling
back this bundle via dev, we obtain a principal R*-bundle. The open
cone 2’ whose projectivization is {? is the total space of a principal
R*-bundle. Pulling back this bundle via dev produces a principal R -
principal bundle over M. The affitie structure on €’. induced from
R™*! — {0}, induces an affine structure on S’. There exists a lift

h:m(S) — SL(n + 1,R)

of the homomorphism 4 : 71(S) — PGL (n + 1,R) so that 7,(S) acts
affinely on S’. Clearly this action is proper and frec. Hence the total
space

S=8/r(Si~8 xRt

of a principal R*-bundle over S with holonomy representation h ad-
mits a radiant affine structure. The radiant vector field pg generates
the (fiberwise) affine action of R on S, which is given locally in coor-
dinates by homotheties. On the other hand every principal R*-bundle
is trivial. Choose any A > 1. The cyclic group (}) C R¥ acts properly
and freely by affine transformations on S. The resulting affine mani-
fold §/()) is homeomorphic to S x §. Corresponding to a convex real
projective structure on S is a whole family of radiant affine structures
on § x S, one for each A. The radiant vector field is. in fact. the
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vector field on § x S! in the direction of S, which we denote by 5—)0
Consider.the characteristic function f : ' -+ R of Q'. The logarithmic
differential d log f is a closed 1-form on Q' wh:ch is:

e positive definite ;

e invariant under Af(’
Then by the above constructiou, there exists ¢ closed 1-form ¢ on S’
such that Va > 0 and is invariant under 71(.S) and (A). Consequently.
there exists a closed 1-form o «n § x St such that Va > 0. O]

With the notation of Lemma 5,

LEMMA 6. « represents the cohomology class of SV fen if @ o
Sx S§' - S' denotes projection then [a] = n3[S'] where [S'] € H'(S")
denotes a generator.

The characteristic function oen ' induces a function on $' which we
again denote by log f. The fundamental group of S naturally acts on

S' by h. For all 4 € T = h(m(5')).
log foy = log f—logdet(y)

But for v € 7,(S5").det(v) = 1. so log f = log f o~. Tt follows that
log f defines a function | : § -+ R such that a = dl is exact. Let
I : S — Sy = S5/{)) denote projection and et & = [I5a. There is a
function [y related to [ on Sy such that @ = dl . The cyclic group (A)
1s generated by

D, :zv+— A,

and

log(foDy)=logf—(n+1)logA

The o is a 1-form on § x S'. For every v € 7, § x S') = 7,(S) x Z,
/ o= / dlog f = log f(3p) —log f(p) = — log det(~)
Sy ¥

where 5 1s the lifting of 4 and p is an arbitiary point in §' whose
projection by S’ = § x §' — §! is the base point of S'. Now

S§'/I-=S~5xR"
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and 7{(S) = 7r1(5') = I" and for all v € T, the period of a around ~ is
zero. Also (A) C m1(S x S'), and ¥V~ € T the period of a is zero. So
by using the Hurewiez isomorphism

HY(W,R) = Hom{ H,(W,Z),R)
= Homim (W), R)

for S x S', we have [a] = 73[S!].
Let % be the vector field on § x S! in the direction of S, i.e. the
infinitesimal generator of the flow:

Oi:(svu) — (s,u+1)

for u € R/Z. Let df be the 1-form dual to %, Le. ‘16—5)—9 = 1. Let C
denote the set of all affine connections V on S x S! such that :

e V is flat and torsionfree ;

) —(% is radiant with respect to V, i.e.

d
P (=) = X
V.x(ae)
for all vector flelds X on S x S,
e Vdb > 0.

Before the main theorem, we prove the following lemina, which asserts
that a radiant vector fleld is affine.

rd

LEMMA 7. Let V be a flat torsionfree connectior. on N. Suppose
p is a vector fleld on N and {0,},cx be its flow. If p is radiant with
respect to V, then V is invariant under ©,.

Proof. Define a derivation A, = L,, - V,, where L, is Lie derivative
with respect to p. So
A(X) = L(X) = V(X)) =[p. X = (Vx, + [p. X] 4+ T(p. X))
-V Xp ™ T(va)

since p is radiant and the torsion T = 0. Then 4,/ X) = —X, that
is. A, = —I. By Prop. 2.6 of page 235 of [8], the vector field p is an
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infinitesimal affine transformation if and only if for all vector field Y
on N

V}: ( _4,,) = R( 128 }’}

where R is the curvature tensor. But Viy(d,) = Vy{=1) == 0 {again
since V is torsionfree) and B = 0 (since V is flat). Thus p is an
infinitesimal affine transformation. Now by prop. 1.4, of [8] (p.228), V

b

is invariant with respect to ©, as desired. [
Let S be a closed surface with \(S) < 0 and fix a basepoint p ¢ 5.

Let = denote the set of all pairs ' f, M) where f: § — M is diffeomor-

phism and AM is a convex RP"-ruanifold. Define a homomorphisin

T Diff’(S — Diff($ « ')

by T(h)(s.u) = (h(s),u). If I ixes the basepcint p € S. then T(h)
fixes the basepoint (p,0) € § x =1

THEOREM 8. The natural mip
d
1s equivariant with respect to T and induces an isornorphism
B(S) - /T(Diff"(S))

By Lemma 5, corresponding to every (f, M) € = is an clement of C.
Conversely, let ¥V € C and

Szp C I}J,())(S X Sl)

be the domain of the exponential map. By Kosiul's theorem, 1 a
sharp convex cone and exp : Q, + §x S'isa covering map. Consider
the projection map I1: S « §' -+ §' 1t is clear that —(% 1S transverse
to level sets of T1. Lift the fHow of 7;’9 to €1, (denoting it by —%l The
l-form a = exp*(df) is closed. H'(Q) = 0 implies that there exists a
function ¢ : @ — R such that a = dé. Level sets of ¢ are transverse to
the How of 7;% because the tangent space of a level set of an arbitrary
point r is the kernel of do = o a’ r and

0 J g, O
= (_(19)(55) = (df)(exp Z'ﬁ) = (exp® d)( (7)?) = d@(gﬁ)
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Thus each level set ¢~ !(c) is a cross-section of ai On the other
hand, Q, is a convex cone and the projectivization of ¢
domain in RP". Now

5~

—1(¢) is a convex

(S x 'Y= m(S) x Z

and
71(8) — SL(3,R)

so ¢ '(c)/T is a convex RP"-structure on S. The commutativity of
the diagram:

¢ el

g —— C
hl J'T(h)

€ — C

is obvious from the above construction and the proof of Lemma 5. that
is, ® is equivariant with respect to T, and induces the isomorphism

B(S) — C/T(Diff(5)).
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