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A NOTE ON LOCAL CALIBRATIONS OF ALMOST

COMPLEX STRUCTURES

Hyeseon Kim

Abstract. In this paper, we study the obstruction on the jets of an al-
most complex structure J to the existence of a symplectic form ω such

that J is compatible with ω. We describe some almost complex struc-

tures on R4 and on R6, respectively, that cannot be calibrated by any
symplectic forms. In particular, these examples pertain to the model al-

most complex structure on R4 in [3], and the simple model structure on

R6 in [7].

1. Introduction

Let (M,ω) be a symplectic manifold. Then it is well-known that there exists
a canonical almost complex structure J associated with any given Riemannian
metric g on M and J is compatible with ω (or ω-calibrated)(cf. [1] and the
references therein). From this fact, the following question naturally arises: Is
the converse of this fact is true? Namely, given an almost complex structure J
on M , does there exist a symplectic form ω such that J is compatible with ω?
In [8], Migliorini and Tomassini addressed the compatibility in this question.
They considered the question locally and observed obstructions on the jets of J
to the existence of such a symplectic form ω. In addition, they gave a negative
answer for certain almost complex structures on R2n, with 2n ≥ 6. However,
computer software was necessary to provide concrete examples.

In [10], Tomassini built on the previous work and provided a more effective
way to check examples of almost complex structures which are not compatible
with any symplectic forms on R6 and, more interestingly, on R4. The examples
in [10] are worthy of attraction due to the fact that these descend to almost
complex structures with the same property on the Iwasawa manifold, the torus
T4, and the Kodaira-Thurston manifold (cf. [2] and [9]).

In this paper, we focus our attention to this local calibration problem for
the model almost complex structure on R4 as defined by Gaussier and Sukhov
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in [3], and for the simple model structure as defined by Lee in [7]. These exam-
ples are originally presented for the study of Wong-Rosay theorem in almost
complex manifolds (see [3] and [7]). Moreover, these examples are also mean-
ingful in perspective of the partial integrability of almost complex structures
as an algebraic generalization of the celebrated Newlander-Nirenberg theorem
(see [5]). In addition, the model almost complex structure on R4 pertains to
infinitesimal automorphisms on almost complex manifolds (see [6]).

This paper is organized as follows. In Section 2, we first review some basic
notations and facts on the symplectic geometry in exploiting the local calibra-
tions of almost complex structures. We then prepare some technical results
needed in the proofs of Theorems 3.1 and 3.2. In Section 3, we shall provide
the proofs of our main results.

2. Preliminaries

We begin with this section by collecting some basic notions on the symplectic
forms and local calibrations. We refer to [1] for more details on symplectic
geometry. Let M be a smooth manifold and ω be a differential 2-form on M .
Let ω̃p be the corresponding linear mapping ω̃p : TpM → T ∗

pM which is defined
by ω̃p(Y )(X) = ωp(X,Y ). A differential 2-form ω on M is said to be symplectic
if it satisfies

(i) ω is closed, that is dω = 0,
(ii) ωp is non-degenerate at each point p ∈ M , that is, for any non-zero

Y ∈ Γ(TpM) there exists an X ∈ Γ(TpM) such that ωp(X,Y ) ̸= 0.

A symplectic manifold is a pair (M,ω) where M is a smooth manifold and ω
is a symplectic form. We call a pair (M,J) an almost complex manifold if M
is a smooth manifold of dimension 2n and J is a smooth tensor field of type
(1, 1) with J2 = −Id, that is, for each p ∈ M , Jp : TpM → TpM is linear and
Jp ◦ Jp = −Id.

Definition 2.1. Let (M,J) be an almost complex manifold and ω be a
symplectic form. An almost complex structure is compatible with ω (or ω-
calibrated) if it satisfies

(i) ω(JX, JY ) = ω(X,Y ) for any vector fields X,Y on M ,

(ii) ω(JX,X) > 0 for any non-zero vector field X on M .

It is well-known that the existence of a closed form ω such that J is ω-
calibrated is equivalent to the existence of an almost Kähler metric onM (cf. [8]).
For examples of almost Kähler structures that are not Kähler, we refer to [4]
and the references therein.

Proposition 2.2 ([1]). Let (M,ω) be a symplectic manifold and g be a Rie-
mannian metric on M . Then there exists a canonical almost complex structure
J on M which is compatible with ω.
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As we mentioned in Section 1, we shall consider so called local calibrations
of almost complex structures, the converse of this proposition.

Throughout the paper, we denote a local coordinate system on R2n by
(x1, . . . , xn). Then the standard complex structure Jst on Cn is defined by
Jst
(

∂
∂xk

)
= ∂

∂xn+k and Jst
(

∂
∂xn+k

)
= − ∂

∂xk for each k = 1, . . . , n. To find
obstruction for local calibrations of almost complex structures, Migliorini and
Tomassini [8] proved the following theorem:

Theorem 2.3 ([8]). Let ωst be the standard symplectic form on R2n and
ω be a symplectic form on R2n such that ω[0] = ωst. Let Jst be the standard
complex structure on R2n and J be an almost complex structure on R2n such
that J [0] = Jst. Let f be a local diffeomorphism on R2n such that f∗ω = ωst

and f∗[0] = Id. Then J is ω-calibrated up to the second order if and only if

[Jst, Xh − tXh][0] =
t∂J

∂xh
− ∂J

∂xh
[0], h = 1, . . . , n,

and

Zhk − tZhk + tYkJstYk + tYkJstYh = 0, h, k = 1, . . . , 2n,

where

Xh :=
∂f∗
∂xh

[0], Yh := [Jst, Xh] +Bh,

Xhk =
∂2f∗

∂xh∂xk
[0],

Zhk := [Jst, Xhk] + (XhXk +XkXh)Jst + [Bh, Xk] + [Bk, Xh]

−XkJstXh −XhJstXk +Bhk,

Bh :=
∂J

∂xh
[0], Bhk =

∂2J

∂xh∂xk
[0].

Remark 2.4. The composition of Theorem 2.3 is based on the following
observation. The group of the local diffeomorphisms on R2n acts on the space
of almost complex structures on R2n in the following way:

(f, J) 7→ J̃ := f−1
∗ ◦ J ◦ f∗,

where f is a local diffeomorphism of R2n, J is an almost complex structure on
R2n, and f∗ is the Jacobian matrix of f . Let ω be a symplectic form on R2n and
J be an almost complex structure on R2n. Then J is ω-calibrated if and only
if J̃ is ω0-calibrated, ω0 being the standard symplectic form on R2n (see [8]).

As a corollary of Theorem 2.3, Migliorini and Tomassini proved the following
(cf. Section 2.1 in [8] and Corollary 2.4 in [10]).

Corollary 2.5 ([8]). Let J be an almost complex structure on R6 such that
J [0] = Jst, the standard complex structure on R6. If there exists a symplectic
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form ω, calibrating J , then the following conditions hold:

− ∂

∂x1
(J26 − J62) +

∂

∂x2
(J16 − J61)−

∂

∂x3
(J15 − J51)

− ∂

∂x4
(J23 − J32) +

∂

∂x5
(J13 − J31)−

∂

∂x6
(J12 − J21) = 0;

− ∂

∂x1
(J23 − J32) +

∂

∂x2
(J13 − J31)−

∂

∂x3
(J12 − J21)

+
∂

∂x4
(J26 − J62)−

∂

∂x5
(J16 − J61) +

∂

∂x6
(J15 − J51) = 0,

where the derivatives of J are evaluated at the origin.

Here we follow the same notation as in [10, Corollary 2.4].

Applying the same argument as in the proof of Corollary 2.5 to R8, one can
obtain the following result.

Corollary 2.6. Let J be an almost complex structure on R8 such that
J [0] = Jst, the standard complex structure on R8. If there exists a symplectic
form ω, calibrating J , then the following conditions hold:

− ∂

∂x1
(J28 − J82) +

∂

∂x2
(J18 − J81)−

∂

∂x4
(J16 − J61)

− ∂

∂x5
(J24 − J42) +

∂

∂x6
(J14 − J41)−

∂

∂x8
(J12 − J21) = 0;

− ∂

∂x1
(J24 − J42) +

∂

∂x2
(J14 − J41)−

∂

∂x4
(J12 − J21)

+
∂

∂x5
(J28 − J82)−

∂

∂x6
(J18 − J81) +

∂

∂x8
(J16 − J61) = 0;

− ∂

∂x1
(J23 − J32) +

∂

∂x2
(J13 − J31)−

∂

∂x3
(J12 − J21)

+
∂

∂x5
(J27 − J72)−

∂

∂x6
(J17 − J71) +

∂

∂x7
(J16 − J61) = 0;

− ∂

∂x1
(J27 − J72) +

∂

∂x2
(J17 − J71)−

∂

∂x3
(J16 − J61)

− ∂

∂x5
(J23 − J32) +

∂

∂x6
(J13 − J31)−

∂

∂x7
(J12 − J21) = 0.

3. Main results

In this section, we construct some non-calibrable almost complex structures
on R4 and on R6, respectively. As we mentioned in Section 1, the examples
presented in this section are closely related to the study of model almost com-
plex structures and simple model structures. At first, for the 4-dimensional
case, we get the following theorem by modifying the arguments in the proof of
Theorem 3.1 in [10].
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Theorem 3.1. Let f, g : R4 → R be functions such that f(0) = g(0) = 0.

If f and g satisfy either ∂f
∂x3 (0) ̸= 0 or ∂g

∂x3 (0) ̸= 0 for local coordinates x =

(x1, x2, x3, x4), then the following

J(x) :=


0 0 −1 0

f(x) 0 −g(x) −1
1 0 0 0

−g(x) 1 −f(x) 0


is an almost complex structure on R4 which cannot be calibrated by any sym-
plectic forms.

Proof. Aiming for the contradiction, assume that the almost complex struc-
ture J is calibrated by a symplectic form ω1 on R4. Then one can define an
almost complex structure J by setting

J :=

(
J 0
0 J2

)
,

where J is the standard complex structure on R6, with local coordinates (x5, x6)
and ω2 = dx6 ∧ dx5 the canonical symplectic form. Let ω := ω1 + ω2. Then ω
is closed and J is calibrated by ω. Now we let

A :=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


and

J̃ :=


0 0 0 −1 0 0
f 0 0 −g −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
−g 1 0 −f 0 0
0 0 1 0 0 0

 .

Then we get

J̃26 − J̃62 = 0;

J̃16 − J̃61 = 0;

J̃15 − J̃51 = g;

J̃23 − J̃32 = 0;

J̃13 − J̃31 = 0;

J̃12 − J̃21 = −f.
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Hence the structure J̃ does not satisfy at least one of the conditions in Corol-
lary 2.5, which is a contradiction. This completes the proof.

Now we recall that the simple model structures [7] are defined by the fol-
lowing setting: We denote by z̃ = (z1, z2) local coordinates in C2. Then, in
C3, a simple model structure is defined by

J =

(
J
(2)
st 0

BJ
z̃ J

(1)
st

)
,

where J
(ℓ)
st is the standard complex structure on Cℓ for each ℓ = 1, 2, and

(
BJ(z̃)

)
C =

(
bJ1,1z̄

1 + bJ1,2z̄
2, bJ2,1z̄

1 + bJ2,2z̄
2
)
:=
(
B

1

J(z̃), B
2

J(z̃)
)

for bJj,k ∈ C, j, k = 1, 2. If this simple model structure is calibrated by a

symplectic form ω1 on R6, then one can consider an almost complex structure
on R6 defined by

J :=

(
J 0
0 J2

)
,

where J2 is the standard complex structure on R2, with local coordinates
(x7, x8) and ω2 = dx8 ∧ dx7 the canonical symplectic form. Let ω := ω1 + ω2.
Then ω is closed and J is calibrated by ω. Let us consider an extension of the
six-dimensional simple model structure to an eight-dimensional almost complex
structure, which is given as follows.

0 0 0 −1 0 0
0 0 0 0 −1 0

Re(B1
J(z̃)) Re(B2

J(z̃)) 0 −Im(B1
J(z̃)) −Im(B1

J(z̃)) −1
1 0 0 0 0 0
0 1 0 0 0 0

−Im(B1
J(z̃)) −Im(B2

J(z̃)) 1 −Re(B1
J(z̃)) −Re(B2

J(z̃)) 0


We denote by J̃ the corresponding extended almost complex structure on R8.
Applying Corollary 2.6 and the above argument to J̃, we obtain the following
theorem.

Theorem 3.2. For z̃ = (z1, z2), z1 := x1 + ıx5, z2 := x2 + ıx6, we let{
B1

J(z̃) = b̄J1,1z
1 + b̄J1,2z

2;

B2
J(z̃) = b̄J2,1z

1 + b̄J2,2z
2,
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such that bJ2,1 ̸= bJ1,2, where bj,k ∈ C for j, k = 1, 2. Then the almost complex
structure

0 0 0 −1 0 0
0 0 0 0 −1 0

Re(B1
J(z̃)) Re(B2

J(z̃)) 0 −Im(B1
J(z̃)) −Im(B1

J(z̃)) −1
1 0 0 0 0 0
0 1 0 0 0 0

−Im(B1
J(z̃)) −Im(B2

J(z̃)) 1 −Re(B1
J(z̃)) −Re(B2

J(z̃)) 0


cannot be calibrated by any symplectic forms on R6.

Remark 3.3. The assumption of this theorem is consistent with the ob-
struction to the integrability of a given almost complex structure.
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