• Title/Summary/Keyword: symmetric ring

Search Result 116, Processing Time 0.02 seconds

A GENERALIZATION OF THE SYMMETRY PROPERTY OF A RING VIA ITS ENDOMORPHISM

  • Fatma Kaynarca;Halise Melis Tekin Akcin
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.373-397
    • /
    • 2024
  • Lambek introduced the concept of symmetric rings to expand the commutative ideal theory to noncommutative rings. In this study, we propose an extension of symmetric rings called strongly α-symmetric rings, which serves as both a generalization of strongly symmetric rings and an extension of symmetric rings. We define a ring R as strongly α-symmetric if the skew polynomial ring R[x; α] is symmetric. Consequently, we provide proofs for previously established outcomes regarding symmetric and strongly symmetric rings, directly derived from the results we have obtained. Furthermore, we explore various properties and extensions of strongly α-symmetric rings.

ON RADICALLY-SYMMETRIC IDEALS

  • Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.339-348
    • /
    • 2011
  • A ring R is called symmetric, if abc = 0 implies acb = 0 for a, b, c ${\in}$ R. An ideal I of a ring R is called symmetric (resp. radically-symmetric) if R=I (resp. R/$\sqrt{I}$) is a symmetric ring. We first show that symmetric ideals and ideals which have the insertion of factors property are radically-symmetric. We next show that if R is a semicommutative ring, then $T_n$(R) and R[x]=($x^n$) are radically-symmetric, where ($x^n$) is the ideal of R[x] generated by $x^n$. Also we give some examples of radically-symmetric ideals which are not symmetric. Connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we show that if R is a symmetric (or semicommutative) (${\alpha}$, ${\delta}$)-compatible ring, then R[x; ${\alpha}$, ${\delta}$] is a radically-symmetric ring. As a corollary we obtain a generalization of [13].

RINGS WITH IDEAL-SYMMETRIC IDEALS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1913-1925
    • /
    • 2017
  • Let R be a ring with identity. An ideal N of R is called ideal-symmetric (resp., ideal-reversible) if $ABC{\subseteq}N$ implies $ACB{\subseteq}N$ (resp., $AB{\subseteq}N$ implies $BA{\subseteq}N$) for any ideals A, B, C in R. A ring R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let S(R) (called the ideal-symmetric radical of R) be the intersection of all ideal-symmetric ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring R, we have $S(M_n(R))=M_n(S(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is ideal-reversible.

SYMMETRY OVER CENTERS

  • KIM, DONG HWA;LEE, YANG;SUNG, HYO JIN;YUN, SANG JO
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.377-386
    • /
    • 2015
  • The symmetric ring property was due to Lambek and provided many useful results in relation with noncommutative ring theory. In this note we consider this property over centers, introducing symmetric-over-center. It is shown that symmetric and symmetric-over-center are independent of each other. The structure of symmetric-over-center ring is studied in relation to various radicals of polynomial rings.

A GENERALIZATION OF SYMMETRIC RING PROPERTY

  • Kim, Hong Kee;Kwak, Tai Keun;Lee, Seung Ick;Lee, Yang;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1309-1325
    • /
    • 2016
  • This note focuses on a ring property in which upper and lower nilradicals coincide, as a generalizations of symmetric rings. The concept of symmetric ideal and ring in the noncommutative ring theory was initially introduced by Lambek, as an extension of the usual commutative ideal theory. The investigation of symmetric rings provided many useful results to the study in the noncommutative ring theory. So the results obtained from this study may be applicable to observing the structure of zero divisors in various kinds of algebraic systems containing matrix rings and polynomial rings.

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS

  • Harmanci, Abdullah;Kose, Handan;Ungor, Burcu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.209-227
    • /
    • 2021
  • In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

SYMMETRIC PROPERTY OF RINGS WITH RESPECT TO THE JACOBSON RADICAL

  • Calci, Tugce Pekacar;Halicioglu, Sait;Harmanci, Abdullah
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Let R be a ring with identity and J(R) denote the Jacobson radical of R, i.e., the intersection of all maximal left ideals of R. A ring R is called J-symmetric if for any $a,b,c{\in}R$, abc = 0 implies $bac{\in}J(R)$. We prove that some results of symmetric rings can be extended to the J-symmetric rings for this general setting. We give many characterizations of such rings. We show that the class of J-symmetric rings lies strictly between the class of symmetric rings and the class of directly finite rings.

RINGS WITH THE SYMMETRIC PROPERTY FOR IDEMPOTENT-PRODUCTS

  • Han, Juncheol;Sim, Hyo-Seob
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.615-621
    • /
    • 2018
  • Let R be a ring with the unity 1, and let e be an idempotent of R. In this paper, we discuss some symmetric property for the set $\{(a_1,a_2,{\cdots},a_n){\in}R^n:a_1a_2{\cdots}a_n=e\}$. We here investigate some properties of those rings with such a symmetric property for an arbitrary idempotent e; some of our results turn out to generalize some known results observed already when n = 2 and e = 0, 1 by several authors. We also focus especially on the case when n = 3 and e = 1. As consequences of our observation, we also give some equivalent conditions to the commutativity for some classes of rings, in terms of the symmetric property.

EMBEDDING PROPERTIES IN NEAR-RINGS

  • Cho, Yong Uk
    • East Asian mathematical journal
    • /
    • v.29 no.3
    • /
    • pp.255-258
    • /
    • 2013
  • In this paper, we initiate the study of zero symmetric and constant parts of near-rings, and then apply these to self map near-rings. Next, we investigate that every near-ring can be embedded into some self map near-ring, and every zero symmetric near-ring can be embedded into some zero symmetric self map near-ring.