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SYMMETRY OVER CENTERS

Dong Hwa Kim, Yang Lee, Hyo Jin Sung∗ and Sang Jo Yun

Abstract. The symmetric ring property was due to Lambek and
provided many useful results in relation with noncommutative ring
theory. In this note we consider this property over centers, in-
troducing symmetric-over-center. It is shown that symmetric and
symmetric-over-center are independent of each other. The struc-
ture of symmetric-over-center ring is studied in relation to various
radicals of polynomial rings.

1. Introduction

Throughout this note every ring is associative with identity unless
otherwise stated. Let R be a ring. We use R[x] to denote the polynomial
ring with an indeterminate x over R. Denote the n by n full (resp.,
upper triangular) matrix ring over R by Matn(R) (resp., Un(R)). Use
Eij for the matrix with (i, j)-entry 1 and elsewhere 0. Z (Zn) denotes
the ring of integers (modulo n). C(R) denotes the center of R, i.e.,
C(R) = {a ∈ R | ar = ra for all r ∈ R}.

A ring is usually called reduced if it has no nonzero nilpotent elements.
Lambek introduced the concept of a symmetric right ideal, unifying the
sheaf representation of commutative rings and reduced rings in [8]. Lam-
bek called a right ideal I of a ring R symmetric if rst ∈ I implies rts ∈ I
for all r, s, t ∈ R. If the zero ideal is symmetric then R is usually called
symmetric; while Anderson-Camillo [3] used the term ZC3 for this con-
cept. It is proved by Lambek that a ring R is symmetric if and only if
r1r2 · · · rn = 0 implies rσ(1)rσ(2) · · · rσ(n) = 0 for any permutation σ of
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the set {1, 2, . . . , n}, where n ≥ 1 and ri ∈ R for all i (see [8, Propo-
sition 1]). Anderson-Camillo also obtained this result independently in
[3, Theorem I.1]. Commutative rings clearly symmetric. Reduced rings
are symmetric by [3, Theorem I.3]. There exist many non-reduced com-
mutative rings (e.g., Zmk with m, k ≥ 2), and many noncommutative
reduced rings (e.g., direct products of noncommutative domains). A
ring is usually called Abelian if every idempotent is central. It is simply
checked that symmetric rings are Abelian.

Let R be a ring and n ≥ 2. Following the literature, consider the
extension rings

Dn(R) =








a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a




∈ Un(R) | a, aij ∈ R





,

Nn(R) = {(aij) ∈ Dn(R) | aii = 0 for all i}, and

Vn(R) = {(aij) ∈ Dn(R) | aij = a(i+1)(j+1) for i = 1, . . . , n−2 and j = 2, . . . , n−1}.
It is easily checked that Vn(R) is isomorphic to the factor ringR[x]/xnR[x].
Note D2(R) = V2(R).

A ring shall be called symmetric-over-center if abc ∈ C(R) implies
acb ∈ C(R) for all a, b, c ∈ R. Symmetric-over-center rings are also
Abelian by Lemma 2.2(1) to follow.

Lemma 1.1. (1) Let A be a ring. The center of D3(A) is





a 0 b
0 a 0
0 0 a


 | a, b ∈ C(A)



 .

(2) Let A be a ring. The center of D2(A) is{(
a b
0 a

)
| a, b ∈ C(A)

}
.

(3) A ring A is commutative if and only if so is D2(A).

Proof. (1) Let R = D3(A) and M =



a c b
0 a d
0 0 a


 ∈ C(R). Then

(rI3)M = M(rI3) implies ra = ar for all r ∈ A, where I3 is the identity
matrix in R. Thus a ∈ C(A).
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First note that the subring







s 0 t
0 s 0
0 0 s


 | s, t ∈ C(A)



 of R is con-

tained in C(R). Then N =



0 c b
0 0 d
0 0 0


 = M − (aI3) is contained in

C(R) since aI3 ∈ C(R). So cE13 = NE23 = E23N = 0 and this yields
c = 0. We also get 0 = NE12 = E12N = dE13, entailing d = 0. These

imply M =



a 0 b
0 a 0
0 0 a


. Next we have



ra 0 rb
0 ra 0
0 0 ra


 = (rI3)M = M(rI3) =



ar 0 br
0 ar 0
0 0 ar


 ,

where r ∈ A. This yields br = rb; hence b ∈ C(A). This completes the
proof.

(2) is shown by the method in the proof of (1), and (3) is an immediate
consequence of (2).

In fact the center of D3(A) is isomorphic to D2(C(A)) in Lemma 1.1.

Proposition 1.2. If A is a commutative ring then D3(A) is a (non-
commutative) symmetric-over-center ring.

Proof. Let A be a commutative ring and R = D3(A). Then the center
of R is 






a 0 b
0 a 0
0 0 a


 | a, b ∈ A





by Lemma 1.1(1).

To show that R is symmetric-over-center, let M1M2M3 ∈ C(R) for

M1 = (aij),M2 = (bij),M3 = (cij) ∈ R. Then M1M2M3 =



a 0 b
0 a 0
0 0 a




for some a, b ∈ A. Here let

M ′
1 =

(
a11 a12
0 a11

)
,M ′

2 =

(
b11 b12
0 b11

)
,M ′

3 =

(
c11 c12
0 c11

)
∈ D2(A).

ButD2(A) is commutative by Lemma 1.1(3), and soM ′
1M

′
2M

′
3 = M ′

1M
′
3M

′
2.

This gives us that the (1, 2)-entry ofM1M2M3 is equal to one ofM1M3M2;
hence the (1, 2)-entry of M1M3M2 is zero. Similarly, the (2, 3)-entry of
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M1M3M2 is also zero. Consequently M1M3M2 is contained in the center
of R, and thus R is symmetric-over-center.

In the following we see that the concepts of symmetric and symmetric-
over-center are independent of each other.

Example 1.3. (1) There exists a symmetric-over-center ring which
is not symmetric. Let A be a commutative ring and R = D3(A). Then R
is not symmetric by the computation that E12E23 = E13 6= 0 = E23E12.
But R is symmetric-over-center by Proposition 1.2.

(2) There exists a symmetric ring which is not symmetric-over-center.
Let K be a field and A = K〈a, b, c〉 be the free algebra generated by the
noncommuting indeterminates a, b, c over K. Let I be the ideal of A
generated by

ab− c, ac− ca, bc− cb

and set R = A/I. We identify a, b, c with their images in R for simplicity.
We first obtain c ∈ C(R) from the fact that ac = ca and bc = cb.

It is easily checked that R is a domain (hence symmetric). However
R is not symmetric-over-center as can be seen by the computation that
1ab = ab = c ∈ C(R), but aba 6= baa implies 1ba = ba /∈ C(R).

Considering the domain in Example 1.3(2), one may hope division
rings to be symmetric-over-center. However there exist division rings
which are not symmetric-over-center as we see in the following.

Example 1.4. (1) Let R be the Hamilton quaternions over the real
number field. Consider a = i, b = i+ j + k and c = 1

3(−1 + j − k) in R.

Then abc = 1 ∈ C(R). But acb = 1
3(−1 + 2j − 2k) /∈ C(R). Thus R is

not symmetric-over-center.

(2) Let K be a field of characteristic zero and A = K〈x, y〉 be the
free algebra generated by the noncommuting indeterminates x, y over
K. Let I be the ideal of A generated by yx− xy − 1 and set R = A/I.
We identify x, y with their images in R for simplicity. Recall that R is
called the first Weyl algebra over K.

Note C(R) = K. Suppose that abc ∈ K for a, b, c ∈ R. Then it is
easily checked that a, b, c ∈ K. So acb ∈ C(R). Thus R is symmetric-
over-center.

But we claim that the quotient division ring of R is not symmetric-
over-center, Q say. Note C(Q) = K. Consider a = x, b = xy, c =
(x2y)−1 in Q. Then abc = 1, but

acb = x(x2y)−1xy = xy−1x−2xy = xy−1x−1y
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is not contained in K. Thus Q is not symmetric-over-center.

2. Basic structure of symmetric-over-center rings

In this section we will study the basic structure of symmetric-
over-center rings. Let R be a ring. N∗(R), N∗(R), N0(R), N(R) and
J(R) denote the prime radical, the upper nilradical (i.e., sum of all nil
ideals), the Wedderburn radical (i.e., the sum of all nilpotent ideals), the
set of all nilpotent elements and the Jacobson radicalin R, respectively.
Following [1, p.130], a subset of R is said to be locally nilpotent if its
finitely generated subrings are nilpotent. Also due to [1, p.130], the
Levitzki radical of R, written by sσ(R), means the sum of all locally
nilpotent ideals of R. It is well-known that N∗(R) ⊆ J(R) and N0(R) ⊆
N∗(R) ⊆ sσ(R) ⊆ N∗(R) ⊆ N(R).

This symmetric-over-center property is left-right symmetric as fol-
lows.

Proposition 2.1. Given a ring R, the following conditions are equiv-
alent:

(1) R is symmetric-over-center;
(2) If a1a2 · · · an ∈ C(R) for a1, . . . , an ∈ R, then aθ(1)aθ(2) · · · aθ(n) ∈

C(R) for any permutation θ of the set {1, 2, . . . , n}, where n is any
positive integer;

(3) abc ∈ C(R) implies bac ∈ C(R) for a, b, c ∈ R.

Proof. We apply the proof of [7, Theorem 1.2].
(1) ⇒ (2): Let R be a symmetric-over-center ring and suppose that

a1 · · · ai · · · aj · · · an ∈ C(R)

for a1, . . . , ai, · · · , aj , . . . , an ∈ R, where i < j. We will use freely R
being symmetric-over-center. From

(a1 · · · ai−1)(ai · · · aj−1)(aj . . . an) ∈ C(R),

we get

(a1 · · · ai−1)(aj . . . an)(ai · · · aj−1) ∈ C(R).

Next from

(a1 · · · ai−1aj)(aj+1 . . . anai)(ai+1 · · · aj−1) ∈ C(R),

we get

(a1 · · · ai−1aj)(ai+1 · · · aj−1)(aj+1 . . . anai) ∈ C(R).
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Similarly from

(a1 · · · ai−1ajai+1 · · · aj−1)(aj+1 . . . an)ai ∈ C(R),

we get

(a1 · · · ai−1)aj(ai+1 · · · aj−1)ai(aj+1 . . . an) ∈ C(R).

Note that any permutation is a product of finite number of transposi-
tions, and so the preceding result implies that aθ(1)aθ(2) · · · aθ(n) ∈ C(R)
for any permutation θ of the set {1, 2, . . . , n}.

(2) ⇒ (3) is clear, and (3) ⇒ (2) is shown by a similar method to the
proof of (1) ⇒ (2).

Following the literature, the index of nilpotency of a ∈ N(R) is the
least positive integer n such that an = 0, write i(a) for n. The index of
nilpotency of a subset S of R is the supremum of the indices of nilpotency
of all nilpotent elements in S, write i(S); and if such a supremum is finite,
then S is said to be of bounded index of nilpotency.

Lemma 2.2. Let R be a symmetric-over-center ring. Then we have
the following results.

(1) R is Abelian.
(2) If a2 = 0 for a ∈ R then ara ∈ C(R) for all r ∈ R.
(3) If a2 = 0 and bn = 0 for a, b ∈ R and n ≥ 1, then (ab)2n−1 = 0

and (ba)2n−1 = 0.
(4) If a2 = 0 for a ∈ R then (RaR)3 = 0.
(5) If R is of bounded index of nilpotency with i(R) = 2, then

N0(R) = N∗(R) = sσ(R) = N∗(R) = N(R).

Proof. (1) Let R be a symmetric-over-center ring, and e2 = e, r ∈ R.
Then e(1−e)r = 0. Since R is symmetric-over-center, er(1−e) ∈ C(R).
This yields er(1−e) = e(er(1−e)) = (er(1−e))e = 0, entailing er = ere.
Similarly, we have (1−e)re = 0. So re = ere, and consequently er = re.
Thus R is Abelian.

(2) Let a2 = 0 for a ∈ R. Then aar = 0 ∈ C(R). Since R is
symmetric-over-center, ara ∈ C(R).

(3) Suppose that a2 = 0 and bn = 0 for a, b ∈ R and n ≥ 1. Since R
is symmetric-over-center, aba ∈ C(R) by (2). This yields

0 = bn(aba)n−1 = b(aba)b · · · b(aba)b,
and this yields (ab)2n−1 = 0 and (ba)2n−1 = 0.
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(4) Let a2 = 0 for a ∈ R. Then ara ∈ C(R) by (2), and so we have
(ara)sa = sa(ara) = 0 for all s ∈ R. This yields (RaR)3 = 0 since every
element of (RaR)3 is of the form

∑
finite rasatau with r, s, t, u ∈ R.

(5) Let a ∈ N(R). If i(R) = 2 then a2 = 0. Since R is symmetric-
over-center, (RaR)3 = 0 by (4) and so a ∈ N0(R). This completes the
proof.

In section 1, we see domains which are not symmetric-over-center,
and so the converse of Lemma 2.2(1) need not hold since domains are
clearly Abelian.

Lemma 2.3. (1) [2, Theorem 3] N∗(R[x]) = N∗(R)[x] for any ring
R.

(2) [2, Theorem 1] J(R[x]) = N [x] for any ring R, where N =
J(R[x]) ∩R is a nil ideal of R which contains sσ(R).

(3) [5, Corollary 4] N0(R[x]) = N0(R)[x] for any ring R.

Proposition 2.4. (1) Let R be a symmetric-over-center ring such
that R is of bounded index of nilpotency with i(R) = 2. Then

J(R[x]) = N0(R[x]) = N∗(R[x]) = sσ(R[x])

= N∗(R[x]) = N0(R)[x] = N(R)[x] = N(R[x]).

(2) Let R be a symmetric-over-center ring such that R is of bounded
index of nilpotency with i(R) = 2. Then R[x]/J(R[x]) is a reduced ring.

Proof. (1) Let R be a symmetric-over-center ring such that R is of
bounded index of nilpotency with i(R) = 2. Then we have

N0(R) = N∗(R) = sσ(R) = N∗(R) = N(R) (1)

by Lemma 2.2(5).

Next we get

J(R[x]) ⊆ N∗(R)[x]

by Lemma 2.3(2), entailing J(R[x]) ⊆ N∗(R)[x] by the equality (1). But
N∗(R)[x] = N∗(R[x]) by Lemma 2.3(1), and N∗(R[x]) ⊆ J(R[x]). Thus
we have

J(R[x]) = N∗(R)[x] = sσ(R)[x] = N∗(R[x])

= N∗(R)[x] = N(R)[x] = N0(R)[x], (2)
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combining the results above. Moreover N0(R)[x] = N0(R[x]) by Lemma
2.3(3), so we get the equality

J(R[x]) = N∗(R)[x] = N∗(R[x]) = sσ(R)[x]

= N∗(R)[x] = N(R)[x] = N0(R)[x] = N0(R[x]), (3)

from the equality (2).
Since N∗(R) = N(R) by the equality (1), N(R[x]) = N∗(R[x]) by [4,

Proposition 2.6]. So we finally obtain

J(R[x]) = N0(R[x]) = N∗(R[x]) = sσ(R[x])

= N∗(R[x]) = N0(R)[x] = N(R)[x] = N(R[x]).

(2) Let R be a symmetric-over-center ring such that R is of bounded
index of nilpotency with i(R) = 2. Then J(R[x]) = N(R[x]) by (1), and
so R[x]/J(R[x]) is a reduced ring.

Recall that an element u of a ring R is right regular if ur = 0 implies
r = 0 for r ∈ R. The left regular can be defined similarly. An element is
regular if it is both left and right regular (i.e., not a zero divisor).

Proposition 2.5. Let R be a ring andM be a multiplicatively closed
subset of R consisting of central regular elements. Then R is symmetric-
over-center if and only if so is M−1R.

Proof. Set E = M−1R. Then C(E) = M−1C(R) by the proof of [6,
Proposition 2.2]. We use this fact freely.

Let αβγ ∈ C(E) for α = u−1a, β = v−1b, γ = w−1c with u, v, w ∈ M
and a, b, c ∈ R. Then

αβγ = z−1(abc) ∈ C(E)

implies abc ∈ C(R), where z = uvw.
If R is symmetric-over-center, then abc ∈ C(R) implies acb ∈ C(R).

Thus we have

αγβ = u−1aw−1cv−1c = (uwv)−1(acb) ∈ M−1C(R) = C(E).

Therefore E is symmetric-over-center.

Conversely let abc ∈ C(R) for a, b, c ∈ R. Since C(R) ⊂ M−1C(R) =
C(E), we have abc ∈ C(E). If E is symmetric-over-center, then abc ∈
C(E) implies acb ∈ C(E). But acb ∈ R, so acb ∈ C(R) = R ∩ C(E).
Thus R is symmetric-over-center.
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Let R be a ring. Recall that the ring of Laurent polynomials, in
an indeterminate x over R, consists of all formal sums

∑n
i=k aix

i with
obvious addition and multiplication, where ai ∈ R and k, n are (possibly
negative) integers with k ≤ n. We denote this ring by R[x;x−1].

Corollary 2.6. Let R be a ring. Then R[x] is symmetric-over-center
if and only if R[x;x−1] is symmetric-over-center.

Proof. The proof is an immediate consequence of Proposition 2.5,
noting that R[x;x−1] = M−1R[x] if M = {1, x, x2, . . .}.
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