SYMMETRY OVER CENTERS

Dong Hwa Kim, Yang Lee, Hyo Jin Sung* and Sang Jo Yun

Abstract

The symmetric ring property was due to Lambek and provided many useful results in relation with noncommutative ring theory. In this note we consider this property over centers, introducing symmetric-over-center. It is shown that symmetric and symmetric-over-center are independent of each other. The structure of symmetric-over-center ring is studied in relation to various radicals of polynomial rings.

1. Introduction

Throughout this note every ring is associative with identity unless otherwise stated. Let R be a ring. We use $R[x]$ to denote the polynomial ring with an indeterminate x over R. Denote the n by n full (resp., upper triangular) matrix ring over R by $\operatorname{Mat}_{n}(R)$ (resp., $U_{n}(R)$). Use $E_{i j}$ for the matrix with (i, j)-entry 1 and elsewhere $0 . \mathbb{Z}\left(\mathbb{Z}_{n}\right)$ denotes the ring of integers (modulo n). $C(R)$ denotes the center of R, i.e., $C(R)=\{a \in R \mid a r=r a$ for all $r \in R\}$.

A ring is usually called reduced if it has no nonzero nilpotent elements. Lambek introduced the concept of a symmetric right ideal, unifying the sheaf representation of commutative rings and reduced rings in [8]. Lambek called a right ideal I of a ring R symmetric if $r s t \in I$ implies $r t s \in I$ for all $r, s, t \in R$. If the zero ideal is symmetric then R is usually called symmetric; while Anderson-Camillo [3] used the term $Z C_{3}$ for this concept. It is proved by Lambek that a ring R is symmetric if and only if $r_{1} r_{2} \cdots r_{n}=0$ implies $r_{\sigma(1)} r_{\sigma(2)} \cdots r_{\sigma(n)}=0$ for any permutation σ of

[^0]the set $\{1,2, \ldots, n\}$, where $n \geq 1$ and $r_{i} \in R$ for all i (see [8 , Proposition 1]). Anderson-Camillo also obtained this result independently in [3, Theorem I.1]. Commutative rings clearly symmetric. Reduced rings are symmetric by [3, Theorem I.3]. There exist many non-reduced commutative rings (e.g., $\mathbb{Z}_{m^{k}}$ with $m, k \geq 2$), and many noncommutative reduced rings (e.g., direct products of noncommutative domains). A ring is usually called Abelian if every idempotent is central. It is simply checked that symmetric rings are Abelian.

Let R be a ring and $n \geq 2$. Following the literature, consider the extension rings

$$
\left.\begin{array}{c}
D_{n}(R)=\left\{\left.\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \in U_{n}(R) \right\rvert\, a, a_{i j} \in R\right\}, \\
N_{n}(R)=\left\{\left(a_{i j}\right) \in D_{n}(R) \mid a_{i i}=0 \text { for all } i\right\}, \text { and }
\end{array}\right\},
$$

It is easily checked that $V_{n}(R)$ is isomorphic to the factor ring $R[x] / x^{n} R[x]$. Note $D_{2}(R)=V_{2}(R)$.

A ring shall be called symmetric-over-center if abc $\in C(R)$ implies $a c b \in C(R)$ for all $a, b, c \in R$. Symmetric-over-center rings are also Abelian by Lemma 2.2(1) to follow.

Lemma 1.1. (1) Let A be a ring. The center of $D_{3}(A)$ is

$$
\left\{\left.\left(\begin{array}{lll}
a & 0 & b \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b \in C(A)\right\} .
$$

(2) Let A be a ring. The center of $D_{2}(A)$ is

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in C(A)\right\} .
$$

(3) A ring A is commutative if and only if so is $D_{2}(A)$.

Proof. (1) Let $R=D_{3}(A)$ and $M=\left(\begin{array}{lll}a & c & b \\ 0 & a & d \\ 0 & 0 & a\end{array}\right) \in C(R)$. Then $\left(r I_{3}\right) M=M\left(r I_{3}\right)$ implies $r a=a r$ for all $r \in A$, where I_{3} is the identity matrix in R. Thus $a \in C(A)$.

First note that the subring $\left\{\left.\left(\begin{array}{ccc}s & 0 & t \\ 0 & s & 0 \\ 0 & 0 & s\end{array}\right) \right\rvert\, s, t \in C(A)\right\}$ of R is contained in $C(R)$. Then $N=\left(\begin{array}{lll}0 & c & b \\ 0 & 0 & d \\ 0 & 0 & 0\end{array}\right)=M-\left(a I_{3}\right)$ is contained in $C(R)$ since $a I_{3} \in C(R)$. So $c E_{13}=N E_{23}=E_{23} N=0$ and this yields $c=0$. We also get $0=N E_{12}=E_{12} N=d E_{13}$, entailing $d=0$. These imply $M=\left(\begin{array}{ccc}a & 0 & b \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right)$. Next we have

$$
\left(\begin{array}{ccc}
r a & 0 & r b \\
0 & r a & 0 \\
0 & 0 & r a
\end{array}\right)=\left(r I_{3}\right) M=M\left(r I_{3}\right)=\left(\begin{array}{ccc}
a r & 0 & b r \\
0 & a r & 0 \\
0 & 0 & a r
\end{array}\right)
$$

where $r \in A$. This yields $b r=r b$; hence $b \in C(A)$. This completes the proof.
(2) is shown by the method in the proof of (1), and (3) is an immediate consequence of (2).

In fact the center of $D_{3}(A)$ is isomorphic to $D_{2}(C(A))$ in Lemma 1.1.
Proposition 1.2. If A is a commutative ring then $D_{3}(A)$ is a (noncommutative) symmetric-over-center ring.

Proof. Let A be a commutative ring and $R=D_{3}(A)$. Then the center of R is

$$
\left\{\left.\left(\begin{array}{ccc}
a & 0 & b \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b \in A\right\}
$$

by Lemma 1.1(1).
To show that R is symmetric-over-center, let $M_{1} M_{2} M_{3} \in C(R)$ for $M_{1}=\left(a_{i j}\right), M_{2}=\left(b_{i j}\right), M_{3}=\left(c_{i j}\right) \in R$. Then $M_{1} M_{2} M_{3}=\left(\begin{array}{ccc}a & 0 & b \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right)$ for some $a, b \in A$. Here let

$$
M_{1}^{\prime}=\left(\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{11}
\end{array}\right), M_{2}^{\prime}=\left(\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{11}
\end{array}\right), M_{3}^{\prime}=\left(\begin{array}{cc}
c_{11} & c_{12} \\
0 & c_{11}
\end{array}\right) \in D_{2}(A)
$$

But $D_{2}(A)$ is commutative by Lemma $1.1(3)$, and so $M_{1}^{\prime} M_{2}^{\prime} M_{3}^{\prime}=M_{1}^{\prime} M_{3}^{\prime} M_{2}^{\prime}$. This gives us that the $(1,2)$-entry of $M_{1} M_{2} M_{3}$ is equal to one of $M_{1} M_{3} M_{2}$; hence the $(1,2)$-entry of $M_{1} M_{3} M_{2}$ is zero. Similarly, the (2,3)-entry of
$M_{1} M_{3} M_{2}$ is also zero. Consequently $M_{1} M_{3} M_{2}$ is contained in the center of R, and thus R is symmetric-over-center.

In the following we see that the concepts of symmetric and symmetric-over-center are independent of each other.

Example 1.3. (1) There exists a symmetric-over-center ring which is not symmetric. Let A be a commutative ring and $R=D_{3}(A)$. Then R is not symmetric by the computation that $E_{12} E_{23}=E_{13} \neq 0=E_{23} E_{12}$. But R is symmetric-over-center by Proposition 1.2.
(2) There exists a symmetric ring which is not symmetric-over-center. Let K be a field and $A=K\langle a, b, c\rangle$ be the free algebra generated by the noncommuting indeterminates a, b, c over K. Let I be the ideal of A generated by

$$
a b-c, a c-c a, b c-c b
$$

and set $R=A / I$. We identify a, b, c with their images in R for simplicity. We first obtain $c \in C(R)$ from the fact that $a c=c a$ and $b c=c b$.

It is easily checked that R is a domain (hence symmetric). However R is not symmetric-over-center as can be seen by the computation that $1 a b=a b=c \in C(R)$, but $a b a \neq b a a$ implies $1 b a=b a \notin C(R)$.

Considering the domain in Example 1.3(2), one may hope division rings to be symmetric-over-center. However there exist division rings which are not symmetric-over-center as we see in the following.

Example 1.4. (1) Let R be the Hamilton quaternions over the real number field. Consider $a=i, b=i+j+k$ and $c=\frac{1}{3}(-1+j-k)$ in R. Then $a b c=1 \in C(R)$. But $a c b=\frac{1}{3}(-1+2 j-2 k) \notin C(R)$. Thus R is not symmetric-over-center.
(2) Let K be a field of characteristic zero and $A=K\langle x, y\rangle$ be the free algebra generated by the noncommuting indeterminates x, y over K. Let I be the ideal of A generated by $y x-x y-1$ and set $R=A / I$. We identify x, y with their images in R for simplicity. Recall that R is called the first Weyl algebra over K.

Note $C(R)=K$. Suppose that $a b c \in K$ for $a, b, c \in R$. Then it is easily checked that $a, b, c \in K$. So $a c b \in C(R)$. Thus R is symmetric-over-center.

But we claim that the quotient division ring of R is not symmetric-over-center, Q say. Note $C(Q)=K$. Consider $a=x, b=x y, c=$ $\left(x^{2} y\right)^{-1}$ in Q. Then $a b c=1$, but

$$
a c b=x\left(x^{2} y\right)^{-1} x y=x y^{-1} x^{-2} x y=x y^{-1} x^{-1} y
$$

is not contained in K. Thus Q is not symmetric-over-center.

2. Basic structure of symmetric-over-center rings

In this section we will study the basic structure of symmetric-over-center rings. Let R be a ring. $N_{*}(R), N^{*}(R), N_{0}(R), N(R)$ and $J(R)$ denote the prime radical, the upper nilradical (i.e., sum of all nil ideals), the Wedderburn radical (i.e., the sum of all nilpotent ideals), the set of all nilpotent elements and the Jacobson radicalin R, respectively. Following [1, p.130], a subset of R is said to be locally nilpotent if its finitely generated subrings are nilpotent. Also due to [1, p.130], the Levitzki radical of R, written by $s \sigma(R)$, means the sum of all locally nilpotent ideals of R. It is well-known that $N^{*}(R) \subseteq J(R)$ and $N_{0}(R) \subseteq$ $N_{*}(R) \subseteq s \sigma(R) \subseteq N^{*}(R) \subseteq N(R)$.

This symmetric-over-center property is left-right symmetric as follows.

Proposition 2.1. Given a ring R, the following conditions are equivalent:
(1) R is symmetric-over-center;
(2) If $a_{1} a_{2} \cdots a_{n} \in C(R)$ for $a_{1}, \ldots, a_{n} \in R$, then $a_{\theta(1)} a_{\theta(2)} \cdots a_{\theta(n)} \in$ $C(R)$ for any permutation θ of the set $\{1,2, \ldots, n\}$, where n is any positive integer;
(3) $a b c \in C(R)$ implies $b a c \in C(R)$ for $a, b, c \in R$.

Proof. We apply the proof of [7, Theorem 1.2].
$(1) \Rightarrow(2)$: Let R be a symmetric-over-center ring and suppose that

$$
a_{1} \cdots a_{i} \cdots a_{j} \cdots a_{n} \in C(R)
$$

for $a_{1}, \ldots, a_{i}, \cdots, a_{j}, \ldots, a_{n} \in R$, where $i<j$. We will use freely R being symmetric-over-center. From

$$
\left(a_{1} \cdots a_{i-1}\right)\left(a_{i} \cdots a_{j-1}\right)\left(a_{j} \ldots a_{n}\right) \in C(R)
$$

we get

$$
\left(a_{1} \cdots a_{i-1}\right)\left(a_{j} \ldots a_{n}\right)\left(a_{i} \cdots a_{j-1}\right) \in C(R)
$$

Next from

$$
\left(a_{1} \cdots a_{i-1} a_{j}\right)\left(a_{j+1} \ldots a_{n} a_{i}\right)\left(a_{i+1} \cdots a_{j-1}\right) \in C(R)
$$

we get

$$
\left(a_{1} \cdots a_{i-1} a_{j}\right)\left(a_{i+1} \cdots a_{j-1}\right)\left(a_{j+1} \ldots a_{n} a_{i}\right) \in C(R)
$$

Similarly from

$$
\left(a_{1} \cdots a_{i-1} a_{j} a_{i+1} \cdots a_{j-1}\right)\left(a_{j+1} \ldots a_{n}\right) a_{i} \in C(R)
$$

we get

$$
\left(a_{1} \cdots a_{i-1}\right) a_{j}\left(a_{i+1} \cdots a_{j-1}\right) a_{i}\left(a_{j+1} \ldots a_{n}\right) \in C(R)
$$

Note that any permutation is a product of finite number of transpositions, and so the preceding result implies that $a_{\theta(1)} a_{\theta(2)} \cdots a_{\theta(n)} \in C(R)$ for any permutation θ of the set $\{1,2, \ldots, n\}$.
$(2) \Rightarrow(3)$ is clear, and $(3) \Rightarrow(2)$ is shown by a similar method to the proof of $(1) \Rightarrow(2)$.

Following the literature, the index of nilpotency of $a \in N(R)$ is the least positive integer n such that $a^{n}=0$, write $i(a)$ for n. The index of nilpotency of a subset S of R is the supremum of the indices of nilpotency of all nilpotent elements in S, write $i(S)$; and if such a supremum is finite, then S is said to be of bounded index of nilpotency.

Lemma 2.2. Let R be a symmetric-over-center ring. Then we have the following results.
(1) R is Abelian.
(2) If $a^{2}=0$ for $a \in R$ then ara $\in C(R)$ for all $r \in R$.
(3) If $a^{2}=0$ and $b^{n}=0$ for $a, b \in R$ and $n \geq 1$, then $(a b)^{2 n-1}=0$ and $(b a)^{2 n-1}=0$.
(4) If $a^{2}=0$ for $a \in R$ then $(R a R)^{3}=0$.
(5) If R is of bounded index of nilpotency with $i(R)=2$, then

$$
N_{0}(R)=N_{*}(R)=s \sigma(R)=N^{*}(R)=N(R)
$$

Proof. (1) Let R be a symmetric-over-center ring, and $e^{2}=e, r \in R$. Then $e(1-e) r=0$. Since R is symmetric-over-center, $\operatorname{er}(1-e) \in C(R)$. This yields er $(1-e)=e(e r(1-e))=(e r(1-e)) e=0$, entailing er $=e r e$. Similarly, we have $(1-e) r e=0$. So $r e=e r e$, and consequently er $=r e$. Thus R is Abelian.
(2) Let $a^{2}=0$ for $a \in R$. Then aar $=0 \in C(R)$. Since R is symmetric-over-center, ara $\in C(R)$.
(3) Suppose that $a^{2}=0$ and $b^{n}=0$ for $a, b \in R$ and $n \geq 1$. Since R is symmetric-over-center, $a b a \in C(R)$ by (2). This yields

$$
0=b^{n}(a b a)^{n-1}=b(a b a) b \cdots b(a b a) b
$$

and this yields $(a b)^{2 n-1}=0$ and $(b a)^{2 n-1}=0$.
(4) Let $a^{2}=0$ for $a \in R$. Then ara $\in C(R)$ by (2), and so we have $($ ara $) s a=s a($ ara $)=0$ for all $s \in R$. This yields $(R a R)^{3}=0$ since every element of $(R a R)^{3}$ is of the form $\sum_{\text {finite }}$ rasatau with $r, s, t, u \in R$.
(5) Let $a \in N(R)$. If $i(R)=2$ then $a^{2}=0$. Since R is symmetric-over-center, $(R a R)^{3}=0$ by (4) and so $a \in N_{0}(R)$. This completes the proof.

In section 1, we see domains which are not symmetric-over-center, and so the converse of Lemma 2.2(1) need not hold since domains are clearly Abelian.

Lemma 2.3. (1) [2, Theorem 3] $N_{*}(R[x])=N_{*}(R)[x]$ for any ring R.
(2) [2, Theorem 1] $J(R[x])=N[x]$ for any ring R, where $N=$ $J(R[x]) \cap R$ is a nil ideal of R which contains $s \sigma(R)$.
(3) [5, Corollary 4] $N_{0}(R[x])=N_{0}(R)[x]$ for any ring R.

Proposition 2.4. (1) Let R be a symmetric-over-center ring such that R is of bounded index of nilpotency with $i(R)=2$. Then

$$
\begin{aligned}
J(R[x]) & =N_{0}(R[x])=N_{*}(R[x])=s \sigma(R[x]) \\
& =N^{*}(R[x])=N_{0}(R)[x]=N(R)[x]=N(R[x])
\end{aligned}
$$

(2) Let R be a symmetric-over-center ring such that R is of bounded index of nilpotency with $i(R)=2$. Then $R[x] / J(R[x])$ is a reduced ring.

Proof. (1) Let R be a symmetric-over-center ring such that R is of bounded index of nilpotency with $i(R)=2$. Then we have

$$
\begin{equation*}
N_{0}(R)=N_{*}(R)=s \sigma(R)=N^{*}(R)=N(R) \tag{1}
\end{equation*}
$$

by Lemma 2.2(5).
Next we get

$$
J(R[x]) \subseteq N^{*}(R)[x]
$$

by Lemma $2.3(2)$, entailing $J(R[x]) \subseteq N_{*}(R)[x]$ by the equality (1). But $N_{*}(R)[x]=N_{*}(R[x])$ by Lemma 2.3(1), and $N_{*}(R[x]) \subseteq J(R[x])$. Thus we have

$$
\begin{align*}
J(R[x]) & =N^{*}(R)[x]=s \sigma(R)[x]=N_{*}(R[x]) \\
& =N_{*}(R)[x]=N(R)[x]=N_{0}(R)[x] \tag{2}
\end{align*}
$$

combining the results above. Moreover $N_{0}(R)[x]=N_{0}(R[x])$ by Lemma $2.3(3)$, so we get the equality

$$
\begin{align*}
J(R[x]) & =N^{*}(R)[x]=N_{*}(R[x])=s \sigma(R)[x] \\
& =N_{*}(R)[x]=N(R)[x]=N_{0}(R)[x]=N_{0}(R[x]) \tag{3}
\end{align*}
$$

from the equality (2).
Since $N_{*}(R)=N(R)$ by the equality (1), N(R[x])=$N_{*}(R[x])$ by [4, Proposition 2.6]. So we finally obtain

$$
\begin{aligned}
J(R[x]) & =N_{0}(R[x])=N_{*}(R[x])=s \sigma(R[x]) \\
& =N^{*}(R[x])=N_{0}(R)[x]=N(R)[x]=N(R[x])
\end{aligned}
$$

(2) Let R be a symmetric-over-center ring such that R is of bounded index of nilpotency with $i(R)=2$. Then $J(R[x])=N(R[x])$ by (1), and so $R[x] / J(R[x])$ is a reduced ring.

Recall that an element u of a ring R is right regular if $u r=0$ implies $r=0$ for $r \in R$. The left regular can be defined similarly. An element is regular if it is both left and right regular (i.e., not a zero divisor).

Proposition 2.5. Let R be a ring and M be a multiplicatively closed subset of R consisting of central regular elements. Then R is symmetric-over-center if and only if so is $M^{-1} R$.

Proof. Set $E=M^{-1} R$. Then $C(E)=M^{-1} C(R)$ by the proof of $[6$, Proposition 2.2]. We use this fact freely.

Let $\alpha \beta \gamma \in C(E)$ for $\alpha=u^{-1} a, \beta=v^{-1} b, \gamma=w^{-1} c$ with $u, v, w \in M$ and $a, b, c \in R$. Then

$$
\alpha \beta \gamma=z^{-1}(a b c) \in C(E)
$$

implies $a b c \in C(R)$, where $z=u v w$.
If R is symmetric-over-center, then $a b c \in C(R)$ implies $a c b \in C(R)$. Thus we have

$$
\alpha \gamma \beta=u^{-1} a w^{-1} c v^{-1} c=(u w v)^{-1}(a c b) \in M^{-1} C(R)=C(E) .
$$

Therefore E is symmetric-over-center.
Conversely let $a b c \in C(R)$ for $a, b, c \in R$. Since $C(R) \subset M^{-1} C(R)=$ $C(E)$, we have $a b c \in C(E)$. If E is symmetric-over-center, then $a b c \in$ $C(E)$ implies $a c b \in C(E)$. But $a c b \in R$, so $a c b \in C(R)=R \cap C(E)$. Thus R is symmetric-over-center.

Let R be a ring. Recall that the ring of Laurent polynomials, in an indeterminate x over R, consists of all formal sums $\sum_{i=k}^{n} a_{i} x^{i}$ with obvious addition and multiplication, where $a_{i} \in R$ and k, n are (possibly negative) integers with $k \leq n$. We denote this ring by $R\left[x ; x^{-1}\right]$.

Corollary 2.6. Let R be a ring. Then $R[x]$ is symmetric-over-center if and only if $R\left[x ; x^{-1}\right]$ is symmetric-over-center.

Proof. The proof is an immediate consequence of Proposition 2.5, noting that $R\left[x ; x^{-1}\right]=M^{-1} R[x]$ if $M=\left\{1, x, x^{2}, \ldots\right\}$.

Acknowledgments. The authors would like to express their deep gratitude to the referee for a very careful reading of the paper, and many valuable comments, which have greatly improved the presentation of the article.

References

[1] S.A. Amitsur, A general theory of radicals III, American J. Math. 76 (1954), 126-136.
[2] S.A. Amitsur, Radicals of polynomial rings, Canad. J. Math. 8 (1956), 355-361.
[3] D.D. Anderson, V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999) 2847-2852.
[4] G.F. Birkenmeier, H.E. Heatherly, E.K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S.K. Jain and S.T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong (1993), 102-129.
[5] V. Camillo, C.Y. Hong, N.K. Kim, Y. Lee, P.P. Nielsen, Nilpotent ideals in polynomial and power series rings, Proc. Amer. Math. Soc. 138 (2010), 16071619.
[6] D.W. Jung, B.-O. Kim, H.K. Kim, Y. Lee, S.B. Nam, S.J. Ryu, H.J. Sung, S.J. Yun, On quasi-commutative rings, (Preprint).
[7] N.K. Kim, T.K. Kwak, Y. Lee, Semicommutative property on nilpotent products, J. Korean Math. Soc. 51 (2014), 1251-1267.
[8] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971) 359-368.

Dong Hwa Kim
Department of Mathematics Education, Pusan National University, Iksan 609-735, Korea.
E-mail: dhgim@pusan.ac.kr

Yang Lee
Department of Mathematics Education, Pusan National University, Iksan 609-735, Korea.
E-mail: ylee@pusan.ac.kr
Hyo Jin Sung
Department of Mathematics, Pusan National University, Iksan 609-735, Korea.
E-mail: hjsung@pusan.ac.kr
Sang Jo Yun
Department of Mathematics, Pusan National University, Iksan 609-735, Korea.
E-mail: pitt0202@hanmail.net

[^0]: Received January 19, 2015. Accepted July 24, 2015.
 2010 Mathematics Subject Classification. 16U70, 16U80.
 Key words and phrases. symmetric-over-center ring, center, symmetric ring.
 This work was supported by a 2-year Research Grant of Pusan National University.
 *Corresponding author

