DOI QR코드

DOI QR Code

SYMMETRIC PROPERTY OF RINGS WITH RESPECT TO THE JACOBSON RADICAL

  • Received : 2017.12.07
  • Accepted : 2018.03.09
  • Published : 2019.01.31

Abstract

Let R be a ring with identity and J(R) denote the Jacobson radical of R, i.e., the intersection of all maximal left ideals of R. A ring R is called J-symmetric if for any $a,b,c{\in}R$, abc = 0 implies $bac{\in}J(R)$. We prove that some results of symmetric rings can be extended to the J-symmetric rings for this general setting. We give many characterizations of such rings. We show that the class of J-symmetric rings lies strictly between the class of symmetric rings and the class of directly finite rings.

Keywords

References

  1. V. P. Camillo and H.-P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737-4749. https://doi.org/10.1080/00927879408825098
  2. H. Chen, On strongly J-clean rings, Comm. Algebra 38 (2010), no. 10, 3790-3804. https://doi.org/10.1080/00927870903286835
  3. J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2
  4. C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167. https://doi.org/10.1016/j.jpaa.2005.01.009
  5. P. A. Krylov and A. A. Tuganbaev, Modules over formal matrix rings, J. Math. Sci. (N.Y.) 171 (2010), no. 2, 248-295; translated from Fundam. Prikl. Mat. 15 (2009), no. 8, 145-211. https://doi.org/10.1007/s10958-010-0133-5
  6. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
  7. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  8. W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.1090/S0002-9947-1977-0439876-2
  9. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  10. L. N. Vaserstein, Bass's first stable range condition, J. Pure Appl. Algebra 34 (1984), no. 2-3, 319-330. https://doi.org/10.1016/0022-4049(84)90044-6
  11. J. Wei, Certain rings whose simple singular modules are nil-injective, Turkish J. Math. 32 (2008), no. 4, 393-408.
  12. J. Wei and L. Li, Quasi-normal rings, Comm. Algebra 38 (2010), no. 5, 1855-1868. https://doi.org/10.1080/00927871003703943
  13. H.-P. Yu, Stable range one for exchange rings, J. Pure Appl. Algebra 98 (1995), no. 1, 105-109. https://doi.org/10.1016/0022-4049(94)00031-D