References
- S.A. Amitsur, A general theory of radicals III, American J. Math. 76 (1954), 126-136. https://doi.org/10.2307/2372404
- S.A. Amitsur, Radicals of polynomial rings, Canad. J. Math. 8 (1956), 355-361. https://doi.org/10.4153/CJM-1956-040-9
- D.D. Anderson, V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999) 2847-2852. https://doi.org/10.1080/00927879908826596
- G.F. Birkenmeier, H.E. Heatherly, E.K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S.K. Jain and S.T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong (1993), 102-129.
- V. Camillo, C.Y. Hong, N.K. Kim, Y. Lee , P.P. Nielsen, Nilpotent ideals in polynomial and power series rings, Proc. Amer. Math. Soc. 138 (2010), 1607-1619. https://doi.org/10.1090/S0002-9939-10-10252-4
- D.W. Jung, B.-O. Kim, H.K. Kim, Y. Lee, S.B. Nam, S.J. Ryu, H.J. Sung, S.J. Yun, On quasi-commutative rings, (Preprint).
- N.K. Kim, T.K. Kwak, Y. Lee, Semicommutative property on nilpotent products, J. Korean Math. Soc. 51 (2014), 1251-1267. https://doi.org/10.4134/JKMS.2014.51.6.1251
- J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971) 359-368. https://doi.org/10.4153/CMB-1971-065-1