• Title/Summary/Keyword: symmetric functions

Search Result 231, Processing Time 0.026 seconds

Sensitivity Analysis in Principal Component Regression with Quadratic Approximation

  • Shin, Jae-Kyoung;Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.623-630
    • /
    • 2003
  • Recently, Tanaka(1988) derived two influence functions related to an eigenvalue problem $(A-\lambda_sI)\upsilon_s=0$ of real symmetric matrix A and used them for sensitivity analysis in principal component analysis. In this paper, we deal with the perturbation expansions up to quadratic terms of the same functions and discuss the application to sensitivity analysis in principal component regression analysis(PCRA). Numerical example is given to show how the approximation improves with the quadratic term.

  • PDF

A STUDY OF POLY-BERNOULLI POLYNOMIALS ASSOCIATED WITH HERMITE POLYNOMIALS WITH q-PARAMETER

  • Khan, Waseem A.;Srivastava, Divesh
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.781-798
    • /
    • 2019
  • This paper is designed to introduce a Hermite-based-poly-Bernoulli numbers and polynomials with q-parameter. By making use of their generating functions, we derive several summation formulae, identities and some properties that is connected with the Stirling numbers of the second kind. Furthermore, we derive symmetric identities for Hermite-based-poly-Bernoulli polynomials with q-parameter by using generating functions.

Propagation Characteristics of Shielded Coplanar Waveguides (차폐된 코플래너 도파로의 전송특성)

  • 김영택;이택경
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1236-1243
    • /
    • 1995
  • The propagation characteristics of the symmetric and the asymmetric shielded coplanar waveguide with finite metallization thickness is analyzed by boundary integral method employing the equivalence principle. Since the Green's function and the basis functions are composed of sinusoidal functions, the integration in Galerkin's method is solved analytically. The propagation constants of the fundamental and the first higher order mode are obtained and the effects of strip thickness, substrate permittivity, and the asymmetry of the structure are calculated.

  • PDF

WHEN ALL PERMUTATIONS ARE COMBINATORIAL SIMILARITIES

  • Viktoriia Bilet;Oleksiy Dovgoshey
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.733-746
    • /
    • 2023
  • Let (X, d) be a semimetric space. A permutation Φ of the set X is a combinatorial self similarity of (X, d) if there is a bijective function f : d(X × X) → d(X × X) such that d(x, y) = f(d(Φ(x), Φ(y))) for all x, y ∈ X. We describe the set of all semimetrics ρ on an arbitrary nonempty set Y for which every permutation of Y is a combinatorial self similarity of (Y, ρ).

Analysis of Symmetric Coupled Line with Crossbar Embedded Structure for Improved Attenuation Characteristics on the Various Lossy Media (다양한 매질내의 손실특성 개선을 위한 크로스바 구조의 대칭 결합선로에 대한 해석)

  • Kim, Yoon-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.61-67
    • /
    • 2010
  • A characterization procedure for analyzing symmetric coupled MIS(Metal-Insulator-Semiconductor) transmission line is used the same procedure as a general single layer symmetric coupled line with perfect dielectric substrate from the extraction of the characteristic impedance and propagation constant for even- and odd-mode. In this paper, an analysis for a new substrate shielding symmetric coupled MIS structure consisting of grounded crossbar at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain (FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded crossbar lines over time-domain signal has been examined. Symmetric coupled MIS transmission line parameters for even- and odd-mode are investigated as the functions of frequency, and the extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor for the new MIS crossbar embedded structure are also presented. It is shown that the quality factor of the symmetric coupled transmission line can be improved without significant change in the characteristic impedance and effective dielectric constant.

COEFFICIENT INEQUALITIES FOR A UNIFIED CLASS OF BOUNDED TURNING FUNCTIONS ASSOCIATED WITH COSINE HYPERBOLIC FUNCTION

  • Gagandeep Singh;Gurcharanjit Singh;Navyodh Singh;Navjeet singh
    • The Pure and Applied Mathematics
    • /
    • v.31 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • The aim of this paper is to study a new and unified class 𝓡αCosh of analytic functions associated with cosine hyperbolic function in the open unit disc E = {z ∈ ℂ : |z| < 1}. Some interesting properties of this class such as initial coefficient bounds, Fekete-Szegö inequality, second Hankel determinant, Zalcman inequality and third Hankel determinant have been established. Furthermore, these results have also been studied for two-fold and three-fold symmetric functions.

SHARP BOUNDS OF FIFTH COEFFICIENT AND HERMITIAN-TOEPLITZ DETERMINANTS FOR SAKAGUCHI CLASSES

  • Surya Giri;S. Sivaprasad Kumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.317-333
    • /
    • 2024
  • For the classes of analytic functions f defined on the unit disk satisfying ${\frac{2zf'(z)}{f(z)-f(-z)}}{\prec}{\varphi}(z)$) and ${\frac{(2zf'(z))'}{(f(z)-f(-z))'}}{\prec}{\varphi}(z)$, denoted by S*s(𝜑) and Cs(𝜑), respectively, the sharp bound of the nth Taylor coefficients are known for n = 2, 3 and 4. In this paper, we obtain the sharp bound of the fifth coefficient. Additionally, the sharp lower and upper estimates of the third order Hermitian Toeplitz determinant for the functions belonging to these classes are determined. The applications of our results lead to the establishment of certain new and previously known results.

An improved parametric formulation for the variationally correct distortion immune three-noded bar element

  • Mukherjee, Somenath;Manju, S.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.261-281
    • /
    • 2011
  • A new method of formulation of a class of elements that are immune to mesh distortion effects is proposed here. The simple three-noded bar element with an offset of the internal node from the element center is employed here to demonstrate the method and the principles on which it is founded upon. Using the function space approach, the modified formulation is shown here to be superior to the conventional isoparametric version of the element since it satisfies the completeness requirement as the metric formulation, and yet it is in agreement with the best-fit paradigm in both the metric and the parametric domains. Furthermore, the element error is limited to only those that are permissible by the classical projection theorem of strains and stresses. Unlike its conventional counterpart, the modified element is thus not prone to any errors from mesh distortion. The element formulation is symmetric and thus satisfies the requirement of the conservative nature of problems associated with all self-adjoint differential operators. The present paper indicates that a proper mapping set for distortion immune elements constitutes geometric and displacement interpolations through parametric and metric shape functions respectively, with the metric components in the displacement/strain replaced by the equivalent geometric interpolation in parametric co-ordinates.

An approximate method for aerodynamic optimization of horizontal axis wind turbine blades

  • Ying Zhang;Liang Li;Long Wang;Weidong Zhu;Yinghui Li;Jianqiang Wu
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.341-354
    • /
    • 2024
  • This paper presents a theoretical method to deal with the aerodynamic performance and pitch optimization of the horizontal axis wind turbine blades at low wind speeds. By considering a blade element, the functional relationship among the angle of attack, pitch angle, rotational speed of the blade, and wind speed is derived in consideration of a quasi-steady aerodynamic model, and aerodynamic loads on the blade element are then obtained. The torque and torque coefficient of the blade are derived by using integration. A polynomial approximation is applied to functions of the lift and drag coefficients for the symmetric and asymmetric airfoils respectively, where specific expressions of aerodynamic loads as functions of the angle of attack (which is a function of pitch angle) are obtained. The pitch optimization problem is investigated by considering the maximum value problem of the instantaneous torque of a blade as a function of pitch angle. Dynamic pitch laws for HAWT blades with either symmetric or asymmetric airfoils are derived. Influences of parameters including inflow ratio, rotational speed, azimuth, and wind speed on torque coefficient and optimal pith angle are discussed.