• Title/Summary/Keyword: surface defect detection

Search Result 137, Processing Time 0.028 seconds

Development of Wafer Bond Integrity Inspection System Based on Laser Transmittance

  • Jang, Dong-Young;Ahn, Hyo-Sok;Mehdi, Sajadieh.S.M.;Lim, Young-Hwan;Hong, Seok-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • Among several critical topics in semiconductor fabrication technology, particles in addition to bonded surface contaminations are issues of great concerns. This study reports the development of a system which inspects wafer bond integrity by analyzing laser beam transmittance deviations and the variations of the intensity caused by the defect thickness. Since the speckling phenomenon exists inherently as long as the laser is used as an optical source and it degrades the inspection accuracy, speckle contrast is another obstacle to be conquered in this system. Consequently speckle contrast reduction methods were reviewed and among the all remedies have been established in the past 30 years the most adaptable solution for inline inspection system is applied. Simulation and subsequently design of experiments has been utilized to discover the best solution to improve irradiance distribution and detection accuracy. Comparison between simulation and experimental results has been done and it confirms an outstanding detection accuracy achievement. Bonded wafer inspection system has been developed and it is ready to be implemented in FAB in the near future.

Detection Algorithm for Cracks on the Surface of Tomatoes using Multispectral Vis/NIR Reflectance Imagery

  • Jeong, Danhee;Kim, Moon S.;Lee, Hoonsoo;Lee, Hoyoung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.199-207
    • /
    • 2013
  • Purpose: Tomatoes, an important agricultural product in fresh-cut markets, are sometimes a source of foodborne illness, mainly Salmonella spp. Growth cracks on tomatoes can be a pathway for bacteria, so its detection prior to consumption is important for public health. In this study, multispectral Visible/Near-Infrared (NIR) reflectance imaging techniques were used to determine optimal wavebands for the classification of defect tomatoes. Methods: Hyperspectral reflectance images were collected from samples of naturally cracked tomatoes. To classify the resulting images, the selected wavelength bands were subjected to two-band permutations, and a supervised classification method was used. Results: The results showed that two optimal wavelengths, 713.8 nm and 718.6 nm, could be used to identify cracked spots on tomato surfaces with a correct classification rate of 91.1%. The result indicates that multispectral reflectance imaging with optimized wavebands from hyperspectral images is an effective technique for the classification of defective tomatoes. Conclusions: Although it can be susceptible to specular interference, the multispectral reflectance imaging is an appropriate method for commercial applications because it is faster and much less expensive than Near-Infrared or fluorescence imaging techniques.

A Study on 3-Dimensional Surface Measurement using Confocal Principle (공초점 원리를 이용한 3차원 표면형상 측정에 관한 연구)

  • Kang, Young-June;Song, Dae-Ho;You, Weon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.169-176
    • /
    • 2001
  • In modern industry, the accuracy and the sulfate-finish requirements for machined parts have been becoming ever more stringent. In addition, the measurement and understanding of surface topography is rapidly attracting the attention of the physicist and chemist as well as the engineer. Optical measuring method is used in vibration measurement, crack and defect detection with the advent of opto-mechatronics, and it is expected to play an important role in surface topography. In this study, the principle of confocal microscope is described, and the advanced 3-D surface measuring system that has better performance than the traditional confocal microscope is developed. Suitable fixtures arc developed and integrated with the computer system for generating 3-D surface and form data. Software for data acquisition and analysis of various parameters in surface geometrical features has been developed.

  • PDF

Pattern Matching for Automatic Defects Detection of the Light Guide Panel (도광판의 자동 결함 검출을 위한 패턴 매칭)

  • Cho, Sang-Hee;Park, Young-Deok;Oh, Choon-Suk;Ryu, Young-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.580-582
    • /
    • 2004
  • As the demand of large and high-resolution display panels is increased, the black light units (BLU) of the display devices play an important roles. In this study we'll deal with various defects of BLUs. Patterns of defects can be classified by the scratches, the non-uniform misprinting for the diffused reflection, the surface stains, spots and etc. Due to these distorted patterns the high-resolution and high-precision could be impeded. We'll propose the visual inspection system to detect various defects by pattern-matching.

  • PDF

A Study of Chemical Mechanical Polishing on Shallow Trench Isolation to Reduce Defect (CMP 연마를 통한 STI에서 결함 감소)

  • 백명기;김상용;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.501-504
    • /
    • 1999
  • In the shallow trench isolation(STI) chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control within- wafer-non-uniformity, and the possible defects such as nitride residue and pad oxide damage. These defects after STI CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI filling and STI CMP were discussed. It is represented that the nitride residue can be occurred in the condition of high post CMP thickness and low trench depth. In addition there are remaining oxide on the moat surface after reverse moat etch. It means that reverse moat etching process can be the main source of nitride residue. Pad oxide damage can be caused by over-polishing and high trench depth.

  • PDF

Application of Blind Deconvolution with Crest Factor for Recovery of Original Rolling Element Bearing Defect Signals (볼 베어링 결함신호 복원을 위한 파고율을 이용한 Blind Deconvolution의 응용)

  • Son, Jong-Duk;Yang, Bo-Suk;Tan, A.C.C.;Mathew, J.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.585-590
    • /
    • 2004
  • Many machine failures are not detected well in advance due to the masking of background noise and attenuation of the source signal through the transmission mediums. Advanced signal processing techniques using adaptive filters and higher order statistics have been attempted to extract the source signal from the measured data at the machine surface. In this paper, blind deconvolution using the eigenvector algorithm (EVA) technique is used to recover a damaged bearing signal using only the measured signal at the machine surface. A damaged bearing signal corrupted by noise with varying signal-to-noise (s/n) was used to determine the effectiveness of the technique in detecting an incipient signal and the optimum choice of filter length. The results show that the technique is effective in detecting the source signal with an s/n ratio as low as 0.21, but requires a relatively large filter length.

  • PDF

Metal-Semiconductor-Metal Photodetector Fabricated on Thin Polysilicon Film (다결정 실리콘 박막으로 구성된 Metal-Semiconductor-Metal 광검출기의 제조)

  • Lee, Jae-Sung;Choi, Kyeong-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.276-283
    • /
    • 2017
  • A polysilicon-based metal-semiconductor-metal (MSM) photodetector was fabricated by means of our new methods. Its photoresponse characteristics were analyzed to see if it could be applied to a sensor system. The processes on which this study focused were an alloy-annealing process to form metal-polysilicon contacts, a post-annealing process for better light absorption of as-deposited polysilicon, and a passivation process for lowering defect density in polysilicon. When the alloy annealing was achieved at about $400^{\circ}C$, metal-polysilicon Schottky contacts sustained a stable potential barrier, decreasing the dark current. For better surface morphology of polysilicon, rapid thermal annealing (RTA) or furnace annealing at around $900^{\circ}C$ was suitable as a post-annealing process, because it supplied polysilicon layers with a smoother surface and a proper grain size for photon absorption. For the passivation of defects in polysilicon, hydrogen-ion implantation was chosen, because it is easy to implant hydrogen into the polysilicon. MSM photodetectors based on the suggested processes showed a higher sensitivity for photocurrent detection and a stable Schottky contact barrier to lower the dark current and are therefore applicable to sensor systems.

Development of a Reliable Real-time 3D Reconstruction System for Tiny Defects on Steel Surfaces (금속 표면 미세 결함에 대한 신뢰성 있는 실시간 3차원 형상 추출 시스템 개발)

  • Jang, Yu Jin;Lee, Joo Seob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1061-1066
    • /
    • 2013
  • In the steel industry, the detection of tiny defects including its 3D characteristics on steel surfaces is very important from the point of view of quality control. A multi-spectral photometric stereo method is an attractive scheme because the shape of the defect can be obtained based on the images which are acquired at the same time by using a multi-channel camera. Moreover, the calculation time required for this scheme can be greatly reduced for real-time application with the aid of a GPU (Graphic Processing Unit). Although a more reliable shape reconstruction of defects can be possible when the numbers of available images are increased, it is not an easy task to construct a camera system which has more than 3 channels in the visible light range. In this paper, a new 6-channel camera system, which can distinguish the vertical/horizontal linearly polarized lights of RGB light sources, was developed by adopting two 3-CCD cameras and two polarized lenses based on the fact that the polarized light is preserved on the steel surface. The photometric stereo scheme with 6 images was accelerated by using a GPU, and the performance of the proposed system was validated through experiments.

Signal analysis of surface discharge and electromagnetic wave for insulator by kaolin contamination (카올린으로 오손된 애자의 표면방전 및 방사전자파의 신호 분석)

  • Park, Jae-Jun
    • The Journal of Information Technology
    • /
    • v.7 no.3
    • /
    • pp.113-118
    • /
    • 2004
  • Recently, diagnosis techniques have been investigated to detect a partial discharge associated with a dielectric material defect in a high voltage electrical apparatus. However, the properties of detection technique of PD aren't completely understood because the physical process of PD. Therefore, this paper analyzes the process on Surface Discharge of Polymer Insulator using Wavelet transform. Wavelet transform provides a direct quantitative measure of spectral content in the time frequency domain. As it is important to develop a non-contact method for detecting the Contamination Degree, this research analyzes the electromagnetic waves emitted from PD using Wavelet transform. This result experimentally shows the process of PD as a two-dimensional distribution in the time-frequency domain. The method is shown to be useful for detecting prediction of contamination degree.

  • PDF

A Study on the Detection of Interfacial Defect to Boundary Surface in Semiconductor Package by Ultrasonic Signal Processing (초음파 신호처리에 의한 반도체 패키지의 접합경계면 결함 검출에 관한 연구)

  • Kim, Jae-Yeol;Hong, Won;Han, Jae-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.369-377
    • /
    • 1999
  • Recently, it is gradually raised necessity that thickness of thin film is measured accuracy and managed in industrial circles and medical world. Ultrasonic signal processing method is likely to become a very powerful method for NDE method of detection of microdefects and thickness measurement of thin film below the limit of ultrasonic distance resolution in the opaque materials, provides useful information that cannot be obtained by a conventional measuring system. In the present research. considering a thin film below the limit of ultrasonic distance resolution sandwiched between three substances as acoustical analysis model, demonstrated the usefulness of ultrasonic signal processing technique using information of ultrasonic frequency for NDE of measurements of thin film thickness. Accordingly, for the detection of delamination between the junction condition of boundary microdefect of thin film sandwiched between three substances the results from digital image processing.

  • PDF