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Abstract 

Many machine failures are not detected well in advance due to the masking of background noise 
and attenuation of the source signal through the transmission mediums. Advanced signal processing 
techniques using adaptive filters and higher order statistics have been attempted to extract the source signal 
from the measured data at the machine surface. In this paper, blind deconvolution using the eigenvector 
algorithm (EVA) technique is used to recover a damaged bearing signal using only the measured signal at the 
machine surface. A damaged bearing signal corrupted by noise with varying signal-to-noise (s/n) was used to 
determine the effectiveness of the technique in detecting an incipient signal and the optimum choice of filter 
length. The results show that the technique is effective in detecting the source signal with an s/n ratio as low 
as 0.21, but requires a relatively large filter length.  

 

1. INTODUCTION 

In order to remain profitable and competitive, it 
is often necessary to extend the production 
capability of the machine until symptoms of 
possible failure occurs. Continuous condition 
monitoring of the machine’s health is therefore 
necessary. One of the major components in rotating 
machineries is the rolling element bearing, which 

provides rotating motion and at the same time 
carries heavy load over a small surface area. 

Although the life of rolling element bearings can 
be calculated based on the load and the rotating 
speed, catastrophic failure of these bearings can 
occur prematurely due to unpredicted static and 
dynamic loading, geometry of the housing, shaft 
and bearing, pre-load and maintenance personnel 
[1]. Numerous techniques are now available to 
detect rolling element bearing failures but the 
suitability of the techniques varies from systems to 
systems.   

Detection of an internal malfunction via vibration 
analysis is widely used, such as shock pulse, 
statistical analysis (crest factor, kurtosis and rms 
level) and frequency based detection techniques [2]. 
Unfortunately, vibration analysis based on 
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frequency and time domain analysis can only be 
effectively applied when the signal-to-noise (s/n) 
ratio is high. Early detection of an incipient failure 
requires special sensors and advanced signal 
processing techniques to detect symptoms of 
imminent. With a small s/n ratio, the source signal 
from a defective component is severely attenuated 
through the machine components until its final 
detection by sensors on the machine surface.  

This requires the noise component in the overall 
vibration signal to be severely attenuated with a 
consequential improvement to the signal to noise 
ratio. One of the earliest methods to suppress noise 
component is the application of adaptive filtering 
techniques, such as adaptive noise cancellation 
(ANC) [3,4]. Other applications of adaptive signal 
processing include identifying rotating machine 
fault is described in [5] and detecting of tool wear 
[6]. Recently other signal processing techniques to 
enhance an internal defect have been introduced, 
such as auto-regressive technique [7] and application 
of higher order moment spectra analysis [8,9]. 
Although auto-regressive techniques have the 
potential for early detection of component defects 
but the complexity of these techniques made them 
difficult to implement and the authors [8] concluded 
that they should not replace conventional methods 
but supplement them.   

Blind deconvolution (equalization) (BD) is a 
technique used to recover the desired signals from a 
single received channel without any priory 
knowledge about the channel. The technique is 
widely used in network communication since 1980s 
[10]. In the past 20 years numerous techniques have 
been proposed to enhance signal based on single 
input in a variety of applications [11-12]. A major 
advantage of BD is that it does not require a 
training stage, which is essential in conventional 
equalization.  

In this paper, BD is applied to recover a rolling 
element bearing signal at source by analyzing the 
transmitted signal via an unknown channel and 
corrupted by noise at a measurement point.  The 
technique utilizes a blind equalizer based on 
Eigenvector Algorithm (EVA). A damaged bearing 
with an outer ring defect is pre-recorded and 
corrupted by simulated gear and shaft noise. The 
measured signals with varying signal-to-noise ratios 
were used to test the effectiveness of the technique 
in detecting an incipient failure. Crest factor (CF) is 
used as a criterion to determine the optimum filter 
length of the equalizer. The results show that for a 
large s/n ratio, a small number of filters were 
sufficient to extract the original signal. As the s/n 

ratio gets small, the filter length increases.  

2. BLIND DECONVOLUTION THEORY 

BD refers to the reconstruction of a source 
signal through an unknown system using only the 
measured (observed) signal alone. Convolution is 
the computation of an output signal v(k), given the 
knowledge of both the input signal d(k) and the 
impulse response h(k) of the system. Deconvolution 
refers to the determination of the impulse response 
of the system h(k) where the output of the system 
v(k) is typically accessible and the knowledge of the 
input (source) signal d(k) is unavailable. Since the 
process is performed “blindly” to estimate the input 
signal, it is called blind deconvolution. 

The observed signal from measurement is given 
by: 

  ( ) ( ) ( ) ( )v k h k d k n k= ∗ +              (1) 

The output of the blind equalizer is denoted by 
x(k), 

( ) ( ) ( )x k e k v k= ∗                  (2) 

1
( ) ( ) ( )

L

k
x k e l v k l

=

= −∑          (3)  

The objective is to derive a set of equalizer 
coefficients e(k) of the blind equalizer from the 
received data to determine an inverse of the impulse 
response of the system. Higher rate of convergence 
has been achieved through the use of higher order 
statistics (HOS) for the estimation of the 
coefficients of the equalizer [15]. In [15] EVA 
method with kurtosis (4th order cumulant matrices) 
was used to extract impacting signals from a 
measured signal. The criterion is to maximize the 
cross-cumulant of the output signals and reference 
signals.  

 
2.1 Eigenvector Algorithm (EVA) Approach 

The schematic of the EVA approach is shown in 
Fig. 1. The input signal is a non-Gaussian independent, 
identically distributed (i.i.d.) sequence of variables 
with zero mean, finite variance σ2, a non-zero 
kurtosis and the transfer function is a causal stable 
system (channel) having impulse sequence h(k).  
The system is corrupted by Gaussian noise n(k) 
with variance σ2. The output from the system is 
given by v(k). The application of BD is to create an 
inverse filter with coefficients e(k) from the 
maximization of the higher order cross-cumulant of 
the  system output signal x(k) and the reference 
signals y(k).  
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Fig. 1 Block diagram of the eigenvector approach 

 
The reference Finite Impulse Response (FIR) 

filter f(k) is introduced to generate an implicit 
sequence of training data with impulse response f(k) 
= f(0), ….f(l) for subsequent use in the iterative 
process. The blind equalizer FIR has the same order 
of impulse response e(k) = e(0),…e(l). The 
equalization objective is to adjust the (l+1) 
coefficients e(k) so that the equalizer sequence x(k) 
is as close as possible to the delay transmitted data 
d(k-k0) in the mean square error (MSE) sense [15]. 

2
0 0( , ) {| [ ] [ ] |}MSE e k x k d k k∆ − −∑      (4)  

where k0 is the delay and l is the order of the FIR 
filter, the minimization of Eq. (4) leads to minimum 
mean square error, MMSE(l, k0).  
 The solution to BD is based on a maximum cross-
kurtosis quality function, similar to that shown in 
[12,14]. As the output from the equalizer x(k) and 
reference FIR y(k) can be only be derived from the 
observed signal v(k), we may considered the two-
dimensional fourth order cross-cumulant sequence 
as shown in [15]. Optimizing of the cross-cumulant 
leads to the well-known eigenvector solution, 

 

4
yv

EVA vv EVAC e R eλ=                  (5) 

The coefficients of the equalizer vector 
[ (0),..., ( )]T

EVA EVA EVAe e l∆e is obtained from the 

eigenvector of 1
4
yv

vv
−R C when the magnitude of the 

eigenvalue λ is at maximum. 

3. SIMULATION STUDY 

3.1 Experimental Rig 
The machine faults simulated by this rig include 

a range of bearing faults, gear faults, unbalance and 
linear and angular misalignments. The variable 
speed motor has a speed range of up to 4000 rpm 
and the drive shaft through a belt drives the gearbox. 
The gear meshing frequencies can be varied by 

changing the dimensions of the shaft input pulley. 
Misalignment is generated by placing thin metal 
shims underneath the output-housing block. 
 In this study, an artificially damaged bearing with 
an outer race defect is installed in the housing block 
at the far end of the test-rig. With a rotating speed 
of 29.69 Hz and known dimensions of the test 
bearing, the impact frequency of rolling elements 
striking the defect produces an impulsive signal 
with an impact rate of 104.7 Hz. A pure defective 
bearing signal without machine faults in time 
domain and frequency domains are shown in Figs. 2 
and 3, respectively. From Fig. 2 the impact periods 
are clearly visible but with varying amplitudes due 
to the non-linearity of the system. The frequency 
spectrum in Fig. 3 shows a number of prominent 
peaks relating to the fundamental damaged bearing 
frequency, fb (104.5Hz) and higher harmonics 
(418Hz (4×fb), 525Hz (5×fb), 628Hz (6×fb)). The 
first peak at 60 Hz is caused by the motor noise and 
88 Hz have not been investigated.  
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Fig. 2 Original damaged bearing signal 
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Fig. 3 Frequency spectrum of the damaged bearing 

signal 
 

3.2 Simulation Model 
The simulation model is to test the feasibility of 

using BD in recovering the source signal. A pure 
defective bearing impulsive signal was generated 
with a simulated defect on the bearing outer ring. 
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This signal represents the source signal d(k) 
propagating through the unknown system (channel) 
h(k) .The source signal is corrupted by a 
combination of periodic noise and instrumentation 
and cable noise to form a sequence of noise signal 
n(k).  

In this work it is assumed to have an unity 
impulsive response h(k). The desired signal from 
the test-rig after passing through the A/D converter 
is stored in the computer. The convolution of the 
desired signal with the impulse response of the 
channel and the simulated noise are summed 
together to form the input v(k) for the EVA process. 
The objective is to obtain an output signal x(k) as 
close as possible to the original source signal. 

 

4. APPLICATIONS 

The EVA approach developed in [15] is chosen 
in this work for its simplicity and excellent 
performance. Proper choice of filter length is 
critical in the calculation of the eigenvectors.  

In [15] it was shown that convergence rate 
strongly depends on the number of parameters to be 
updated that is the filter length of the equalizer. This 
is confirmed experimentally through simulation 
studies and a trial and error method to determine the 
optimum filter length [16]. 

This paper illustrates a practical approach in 
determining the optimum filter length using a 
computer simulation study. The EVA approach with 
crest factor as criteria for determining the filter 
number is compare to original signal`s crest factor. 
After initiating the fundamental parameters, the 
EVA algorithm will evaluate the coefficients of the 
equalizer and to use them to update the reference 
filter’s coefficients. 

At the end of the EVA process, the output results, 
for a particular filter length, from the equalizer will 
be compared with the known simulated source data. 
The initial Crest Factor, defined as the ratio of peak 
value over the root-mean-square (rms), before 
corrupted by simulated noise and the Crest Factor 
of the output results after EVA will be used as a 
feature for determining the optimum filter length. In 
this paper, the algorithm will be terminated if the 
output result is within 10% of the initial Crest 
Factor.   

5. SIMULATION TEST 

This study is to determine the effectiveness of 

BD techniques in detecting a source signal 
corrupted by noise. The source signal (shown in Fig. 
3) is a known damaged bearing signal with a crest 
factor of 4.628 and an rms level of 0.0343v. The 
corrupting noise consists of a 50 Hz component and 
a 350 Hz component with two sidebands to 
represent an unbalance and a gear fault, respectively.  

With a low level of corruption, it is obvious that 
damaged bearing signals are still visible. With a low 
s/n ratio, the bearing signals are totally buried in 
noise. The amplitudes of corrupted noise in relation 
to the bearing signals for the various s/n ratios are 
shown. 

As the noise level increases, it becomes difficult 
to identify the periodic components of the damaged 
bearing.   With the s/n ratios lower that 0.14, the 
damaged bearing component is totally buried in 
noise as shown in the frequency plots in Fig. 4. 
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Fig. 4 Bearing signals corrupted by large level 

noise with s/n ratio = 0.1404 

6. RESULT AND DISCUSSION 

In this paper, crest factor is used as the target for 
determining the optimization of the blind equalizer 
filter length. As the CF hits the threshold level of 
±10% of the original damaged CF, the program will 
terminate. A high s/n ratio needs a shorter filter 
length, while a low s/n ratio requires a larger filter 
length. For input signals with an extremely low s/n 
ratio (0.1404), the current test set up was not able to 
obtain an optimum filter length and the extraction 
of the original bearing signals. This reason for this 
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could be due to insufficient filter length in the 
program or signal component is too low for the 
EVA to detect.  

The original rms value of the damaged bearing 
signal is 0.0434. For higher s/n ratios the output rms 
levels were relatively consistence with the original 
value. However, as the s/n ratio gets smaller, the 
rms level started with a relatively high value, then 
dropped after some iteration and rose again to high 
values. This is probably the reason for the low CF 
values due to the high rms levels and small peaks. 
The result finally converges to the original CF and 
the rms value converges to the original rms value. 
For an extremely small s/n ratio, the result does not 
seem to converge to the original CF. 

The EVA output results in time and frequency 
plots for the range of s/n ratios are shown in Fig. 5. 
All the time domain plots are identical to the 
original bearing signals shown in Fig. 3. 

In the frequency plots show remnants of noise 
components after the EVA process, although are 
much smaller in amplitudes. These values do not 
seem to affect the time domain signal of the original 
damaged bearing signal. The original amplitudes 
(unfiltered) of the major frequency components and 
the amplitudes after the EVA process (filtered) are 
shown in Table 1. 

A comparison of the unfiltered frequency 
components to those of filtered is shown in Tables 1 

and 2. It can be seen that the 50Hz component in 
Step 1 (s/n = 4.2136) has a reduction of 0.5394/ 

0.0167 and in Step 4 (s/n = 0.2105) has a reduction 
of 10.795/0.0176. This shows that the noise component 

has been severely suppressed. The amplitude 
reduction in Step 1 and Step 4 are 0.4457/0.0877 

and 10.6921/0.00551, respectively. On the other, the 
original source signal has only a small fluctuation 
of the original amplitude. For example, the 628Hz 

component, the change in Step 1 and Step 4 are 
0.3577/0.1244 and 0.3578/0.3054.  
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s/n ratio = 0.1404 
Fig. 5 Results of EVA 

7. CONCLUSION 

Proper choice of EVA equalizer filter length in 
the blind deconvolution is critical in the recovery of 
the original signal corrupted by noise and the 
convolution of the signal with the channel during 
the transmission process. The results conclude that 
with a high signal-to-noise ratio (s/n = 4.2), a low 
level of corrupting noise and high signal, the EVA 
process needs only 14 coefficients of the filter 
length. As the noise level increases, with a 
consequential reduction of s/n ratio, the filter length 
increases. For an s/n ratio of 0.21 the filter length is 
78. With an extremely low s/n ratio (s/n = 0.14), the 
EVA failed to recover the original signal for a filter 
length of up to 80 coefficients. Work is now in 
progress to apply the technique in enhancing real 
life bearing signal with an extended filter length to 
test the limiting s/n ratio for successful application 
of the technique. 

 
Table 1 Amplitude ratios of major frequency 
components 

Step 1 Step 2 
Signal 

Frequency
Unfiltered

10−2 

Filtered

10−2 

Unfiltered 

10−2 

Filtered

10−2 

Original
Value

 

50Hz 0.5394 0.0167 3.2372 0.0840 0 

59Hz 0.1625 0.0058 0.1625 0.0048 0.1611

87.5Hz 0.2740 0.0144 0.2740 0.0115 0.2742

104.7Hz 0.3245 0.0201 0.3245 0.0155 0.3245

300Hz 0.0682 0.0118 0.6700 0.0184 0.1584

350Hz 0.4457 0.0877 3.1348 0.0699 0.1475

400Hz 0.1467 0.0327 0.7979 0.0754 0.0884

418.8Hz 0.5613 0.1313 0.5613 0.0711 0.5613

525Hz 0.6044 0.1763 0.6044 0.2107 0.6049

628Hz 0.3577 0.1244 0.3578 0.2107 0.3578

734HZ 0.2622 0.1040 0.2622 0.2009 0.2622
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Table 2 Amplitude ratios of major frequency 
components. 

Step 3 Step 4 
Signal 

Frequency 
Unfiltered 

10−2 

Filtered 

10−2 

Unfiltered 

10−2 

Filtered 

10−2 

Original

Value 

10−2 
50Hz 5.4065 0.0174 10.7950 0.0178 0 

59Hz 0.1625 0 0.1625 0.0039 0.1611

87.5Hz 0.2740 0.0071 0.2740 0.0039 0.2742

104.7Hz 0.3245 0.0123 0.3245 0.0069 0.3245

300Hz 1.2040 0.0895 2.5571 0.0406 0.1584

350Hz 5.2938 0.0149 10.6921 0.0551 0.1475

400Hz 1.3126 0.1496 2.6841 0.1502 0.0884

418.8Hz 0.5613 0.0905 0.5613 0.0497 0.5613

525Hz 0.6044 0.2725 0.6044 0.1982 0.6049

628Hz 0.3578 0.2220 0.3578 0.3054 0.3578

734HZ 0.2622 0.1452 0.2622 0.2343 0.2622
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