DOI QR코드

DOI QR Code

Metal-Semiconductor-Metal Photodetector Fabricated on Thin Polysilicon Film

다결정 실리콘 박막으로 구성된 Metal-Semiconductor-Metal 광검출기의 제조

  • Lee, Jae-Sung (Division of Green Energy Engineering, Uiduk University) ;
  • Choi, Kyeong-Keun (National Institute for Nanomaterials Technology (NINT), POSTECH)
  • 이재성 (위덕대학교 그린에너지공학부) ;
  • 최경근 (나노융합기술원 포항공과대학교)
  • Received : 2017.02.23
  • Accepted : 2017.03.20
  • Published : 2017.05.01

Abstract

A polysilicon-based metal-semiconductor-metal (MSM) photodetector was fabricated by means of our new methods. Its photoresponse characteristics were analyzed to see if it could be applied to a sensor system. The processes on which this study focused were an alloy-annealing process to form metal-polysilicon contacts, a post-annealing process for better light absorption of as-deposited polysilicon, and a passivation process for lowering defect density in polysilicon. When the alloy annealing was achieved at about $400^{\circ}C$, metal-polysilicon Schottky contacts sustained a stable potential barrier, decreasing the dark current. For better surface morphology of polysilicon, rapid thermal annealing (RTA) or furnace annealing at around $900^{\circ}C$ was suitable as a post-annealing process, because it supplied polysilicon layers with a smoother surface and a proper grain size for photon absorption. For the passivation of defects in polysilicon, hydrogen-ion implantation was chosen, because it is easy to implant hydrogen into the polysilicon. MSM photodetectors based on the suggested processes showed a higher sensitivity for photocurrent detection and a stable Schottky contact barrier to lower the dark current and are therefore applicable to sensor systems.

Keywords

References

  1. M. Siegert, M. Loken, Ch. Glingener, and Ch. Buchal, IEEE J. Sel. Top. Quantum Electron., 4, 970 (1998). [DOI: http://dx.doi.org/10.1109/2944.736086]
  2. W. H. Park, D. K. Ban, H. Kim, H. S. Kim, M. Patel, J. H. Yoo, and J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 445 (2016). [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.7.445]
  3. C. S. Lin, L. P. Tu, R. H. Yeh, and J. W. Hong, IEEE Photon. Technol. Lett., 15, 966 (2003). [DOI: http://dx.doi.org/10.1109/LPT.2003.813445]
  4. R. P. MacDonald, N. G. Tarr, B. A. Syrett, S. A. Boothroyd, and J. Chrostowski, IEEE Photon. Technol. Lett., 11, 108 (1999). [DOI: http://dx.doi.org/10.1109/68.736410]
  5. R. Pownall, J. Kindt, P. Nikkel, and K. L. Lear, J. Lightwave Technol., 28, 2724 (2010). [DOI: http://dx.doi.org/10.1109/JLT.2010.2063016]
  6. M. Y. Liu, S. Y. Chou, S. Alexandrou, C. C. Wang, and T. Y. Hsiang, IEEE Trans. Electron Dev., 40, 2145 (1993). [DOI: http://dx.doi.org/10.1109/16.239836]
  7. A. Irreraa, F. Iaconaa, G. Franzob, S. Boninellib, D. Pacificib, M. Miritellob, C. Spinellaa, D. Sanfilippoc, G. D. Stefanoc, P. G. Fallicac, and F. Priolob, Opt. Mater., 27, 1031 (2005). [DOI: http://dx.doi.org/10.1016/j.optmat.2004.08.058]
  8. N. M. Jokerst, T. K. Gaylord, E. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag., 27, 376 (2004). [DOI: http://dx.doi.org/10.1109/TADVP.2004.831894]
  9. G. Yuan, M. D. Stephens, D. Dandy, and K. L. Lear, Proc. SPIE, 5557, 140 (2004). [DOI: http://dx.doi.org/10.1117/12.560195]
  10. J. S. Lee, J. Korean Phys. Soc., 69, 60 (2016). [DOI: http://dx.doi.org/10.3938/jkps.69.60]
  11. J. S. Lee, J. Nanosci. Nanotechnol., 16, 6193 (2016). [DOI: http://dx.doi.org/10.1166/jnn.2016.12109]
  12. G. Harbeke, Polycrystalline Semiconductor Physical Properties and Application, (Springer-Verlag, 1984) p. 165.
  13. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, Sensors, 10, 10571 (2010). [DOI: http://dx.doi.org/10.3390/s101210571]
  14. R. W. Lee, R. C. Frank, and D. E. Swets, J. Chem. Phys., 36, 1026 (1962). [DOI: http://dx.doi.org/10.1063/1.1732632]