• 제목/요약/키워드: strongly ${\pi}$-*-regular ring

검색결과 16건 처리시간 0.017초

SOME RESULTS ON STRONG π-REGULARITY

  • Cho, Yong Uk
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.293-297
    • /
    • 2009
  • We will introduce some properties of strongly reduced near-rings and the notion of left $\pi$-regular near-ring. Also, we will study for right $\pi$-regular, strongly left $\pi$-regular, strongly right $\pi$-regular and strongly $\pi$- regular. Next, we may characterize the strongly $\pi$-regular near-rings with related strong reducibility.

  • PDF

STRONGLY π-REGULAR MORITA CONTEXTS

  • Chen, Huan-Yin
    • 대한수학회보
    • /
    • 제40권1호
    • /
    • pp.91-99
    • /
    • 2003
  • In this paper, we show that if the ring of a Merits context (A, B, M, N, ${\psi},\;{\phi}$) with zero pairings is a strongly $\pi$-regular ring of bounded index if and only if so are A and B. Furthermore, we extend this result to the ring of a Merits context over quasi-duo strongly $\pi$-regular rings.

A NOTE ON STRONGLY *-CLEAN RINGS

  • CUI, JIAN;WANG, ZHOU
    • 대한수학회지
    • /
    • 제52권4호
    • /
    • pp.839-851
    • /
    • 2015
  • A *-ring R is called (strongly) *-clean if every element of R is the sum of a projection and a unit (which commute with each other). In this note, some properties of *-clean rings are considered. In particular, a new class of *-clean rings which called strongly ${\pi}$-*-regular are introduced. It is shown that R is strongly ${\pi}$-*-regular if and only if R is ${\pi}$-regular and every idempotent of R is a projection if and only if R/J(R) is strongly regular with J(R) nil, and every idempotent of R/J(R) is lifted to a central projection of R. In addition, the stable range conditions of *-clean rings are discussed, and equivalent conditions among *-rings related to *-cleanness are obtained.

ON A GENERALIZATION OF RIGHT DUO RINGS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.925-942
    • /
    • 2016
  • We study the structure of rings whose principal right ideals contain a sort of two-sided ideals, introducing right ${\pi}$-duo as a generalization of (weakly) right duo rings. Abelian ${\pi}$-regular rings are ${\pi}$-duo, which is compared with the fact that Abelian regular rings are duo. For a right ${\pi}$-duo ring R, it is shown that every prime ideal of R is maximal if and only if R is a (strongly) ${\pi}$-regular ring with $J(R)=N_*(R)$. This result may be helpful to develop several well-known results related to pm rings (i.e., rings whose prime ideals are maximal). We also extend the right ${\pi}$-duo property to several kinds of ring which have roles in ring theory.

RINGS CLOSE TO SEMIREGULAR

  • Aydogdu, Pinar;Lee, Yang;Ozcan, A. Cigdem
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.605-622
    • /
    • 2012
  • A ring $R$ is called semiregular if $R/J$ is regular and idem-potents lift modulo $J$, where $J$ denotes the Jacobson radical of $R$. We give some characterizations of rings $R$ such that idempotents lift modulo $J$, and $R/J$ satisfies one of the following conditions: (one-sided) unit-regular, strongly regular, (unit, strongly, weakly) ${\pi}$-regular.

EXTENSIONS OF STRONGLY π-REGULAR RINGS

  • Chen, Huanyin;Kose, Handan;Kurtulmaz, Yosum
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.555-565
    • /
    • 2014
  • An ideal I of a ring R is strongly ${\pi}$-regular if for any $x{\in}I$ there exist $n{\in}\mathbb{N}$ and $y{\in}I$ such that $x^n=x^{n+1}y$. We prove that every strongly ${\pi}$-regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any $x{\in}I$ there exist two distinct m, $n{\in}\mathbb{N}$ such that $x^m=x^n$. Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly ${\pi}$-regular and for any $u{\in}U(I)$, $u^{-1}{\in}\mathbb{Z}[u]$.

WEAKLY DUO RINGS WITH NIL JACOBSON RADICAL

  • KIM HONG KEE;KIM NAM KYUN;LEE YANG
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.457-470
    • /
    • 2005
  • Yu showed that every right (left) primitive factor ring of weakly right (left) duo rings is a division ring. It is not difficult to show that each weakly right (left) duo ring is abelian and has the classical right (left) quotient ring. In this note we first provide a left duo ring (but not weakly right duo) in spite of it being left Noetherian and local. Thus we observe conditions under which weakly one-sided duo rings may be two-sided. We prove that a weakly one-sided duo ring R is weakly duo under each of the following conditions: (1) R is semilocal with nil Jacobson radical; (2) R is locally finite. Based on the preceding case (1) we study a kind of composition length of a right or left Artinian weakly duo ring R, obtaining that i(R) is finite and $\alpha^{i(R)}R\;=\;R\alpha^{i(R)\;=\;R\alpha^{i(R)}R\;for\;all\;\alpha\;{\in}\;R$, where i(R) is the index (of nilpotency) of R. Note that one-sided Artinian rings and locally finite rings are strongly $\pi-regular$. Thus we also observe connections between strongly $\pi-regular$ weakly right duo rings and related rings, constructing available examples.

A Characterization on Strong Reducibility of Near-Rings

  • Cho, Yong-Uk
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제10권
    • /
    • pp.283-292
    • /
    • 2000
  • We shall introduce new concepts of near-rings, that is, strong reducibility and left semi ${\pi}$-regular near-rings. We will study every strong reducibility of near-ring implies reducibility of near-ring but this converse is not true, and also some characterizations of strong reducibility of near-rings. We shall investigate some relations between strongly reduced near-rings and left strongly regular near-rings, and apply strong reducibility of near-rings to the study of left semi ${\pi}$-regular near-rings, s-weekly regular near-rings and some other regularity of near-rings.

  • PDF

ON RINGS WHOSE ESSENTIAL MAXIMAL RIGHT IDEALS ARE GP-INJECTIVE

  • Jeong, Jeonghee;Kim, Nam Kyun
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.399-407
    • /
    • 2022
  • In this paper, we continue to study the von Neumann regularity of rings whose essential maximal right ideals are GP-injective. It is proved that the following statements are equivalent: (1) R is strongly regular; (2) R is a 2-primal ring whose essential maximal right ideals are GP-injective; (3) R is a right (or left) quasi-duo ring whose essential maximal right ideals are GP-injective. Moreover, it is shown that R is strongly regular if and only if R is a strongly right (or left) bounded ring whose essential maximal right ideals are GP-injective. Finally, we prove that a PI-ring whose essential maximal right ideals are GP-injective is strongly π-regular.

MCCOY CONDITION ON IDEALS OF COEFFICIENTS

  • Cheon, Jeoung Soo;Huh, Chan;Kwak, Tai Keun;Lee, Yang
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1887-1903
    • /
    • 2013
  • We continue the study of McCoy condition to analyze zero-dividing polynomials for the constant annihilators in the ideals generated by the coefficients. In the process we introduce the concept of ideal-${\pi}$-McCoy rings, extending known results related to McCoy condition. It is shown that the class of ideal-${\pi}$-McCoy rings contains both strongly McCoy rings whose non-regular polynomials are nilpotent and 2-primal rings. We also investigate relations between the ideal-${\pi}$-McCoy property and other standard ring theoretic properties. Moreover we extend the class of ideal-${\pi}$-McCoy rings by examining various sorts of ordinary ring extensions.