STRONGLY II-REGULAR MORITA CONTEXTS

HUANYIN CHEN

ABSTRACT. In this paper, we show that if the ring of a Morita context (A,B,M,N,ψ,ϕ) with zero pairings is a strongly π -regular ring of bounded index if and only if so are A and B. Furthermore, we extend this result to the ring of a Morita context over quasi-duo strongly π -regular rings.

Let R be an associative ring with identity. We say that R is strongly π -regular if for each $x \in R$ there exists a positive integer m = m(a), depending on a, such that $a^m R = a^{m+1} R$. This concept is left-right symmetric and is equivalent to the condition that every cyclic left or right R-module is co-hopfian. It is well known that every strongly π -regular ring has stable range one and every element in a strongly π -regular ring is either a two-sided zero divisor or a unit. Many authors have studied such rings such as [1], [3]-[6] and [9]-[12].

Recall that a Morita context denoted by (A, B, M, N, ψ, ϕ) consists of two rings A, B, two bimodules ${}_AN_{B,B}M_A$ and a pair of bimodule homomorphisms (called pairings) $\psi: N \bigotimes_B M \to A$ and $\phi: M \bigotimes_A N \to B$ which satisfy the following associativity:

$$\psi(n\bigotimes m)n'=n\phi(m\bigotimes n'),\quad \phi(m\bigotimes n)m'=m\psi(n\bigotimes m').$$

These conditions insure that the set T of generalized matrices

$$T = \left\{ \left(egin{array}{cc} a & n \\ m & b \end{array}
ight) \mid a \in A, b \in B, m \in M, n \in N
ight\}$$

forms a ring, called the ring of the context (A,B,M,N,ψ,ϕ) . In [8], A. Haghany and K. Varadarajan studied Morita contexts with all N=0 (i.e., formal triangular rings). In [6], A. Haghany investigated hopficity and co-hopficity for Morita contexts with zero pairings. He showed that if T is the ring of a Morita context (A,B,M,N,ψ,ϕ) with zero pairings then T is strongly π -regular provided that A and B are strongly π -regular, and that zero divisors in A and B annihilate M and N.

Received July 9, 2002.

2000 Mathematics Subject Classification: 16E50.

Key words and phrases: strongly π -regular ring, Morita context.

Following a new route, we now investigate the conditions under which the ring of a Morita context (A, B, M, N, ψ, ϕ) with zero pairings is strongly π -regular. We prove that T is a strongly π -regular ring of bounded index if and only if so are A and B. Furthermore, we extend this result to right (left) quasi-duo strongly π -regular rings.

Throughout, rings are associative with identity. U(R) denotes the set of units of R and J(R) denotes the Jacobson radical of R. We always use T to denote the ring of a Morita context (A, B, M, N, ψ, ϕ) .

LEMMA 1. Let T be the ring of a Morita context (A, B, M, N, ψ, ϕ) with zero pairings. Then $T/J(T) \cong A/J(A) \oplus B/J(B)$.

Proof. One easily checks that $J(T) = \begin{pmatrix} J(A) & N \\ M & J(B) \end{pmatrix}$. We construct a map $\theta: T \to \begin{pmatrix} A/J(A) & 0 \\ 0 & B/J(B) \end{pmatrix}$ given by $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \mapsto \begin{pmatrix} a+J(A) & 0 \\ 0 & b+J(B) \end{pmatrix}$ for any $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \in T$. Because of zero pairings, we claim that θ is a ring epimorphism. Therefore $T/J(T) \cong T/\mathrm{Ker}(\theta) \cong A/J(A) \oplus B/J(B)$, as asserted.

Recall that a ring R is of bounded index provided that there exists some positive integer n such that $a^n=0$ for all nilpotent $a\in R$. It is well known that every regular ring (or weakly P-exchange ring) of bounded index is strongly π -regular ring. For the Morita contexts over strongly π -regular rings of bounded index, we derive the following.

THEOREM 2. Let T be the ring of a Morita context (A, B, M, N, ψ, ϕ) with zero pairings. Then T is strongly π -regular of bounded index if and only if so are A and B.

Proof. Suppose that T is a strongly π -regular ring of bounded index. Set $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. It is easy to check that $A \cong eTe$ is also a strongly π -regular ring of bounded index. Likewise, B is a strongly π -regular ring of bounded index, as required.

Conversely, assume now that A and B are both strongly π -regular rings of bounded index. Then A/J(A) and B/J(B) are also strongly π -regular. It follows by Lemma 1 that T/J(T) is strongly π -regular.

Using Lemma 1 again, we have $J(T)\cong\begin{pmatrix}J(A)&N\\M&J(B)\end{pmatrix}$. Assume that the bounded indices of A and B are s and t respectively. Since A and B are strongly π -regular, J(A) and J(B) are nil. Given any

 $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \in J(T)$, then $a^{s+t} = 0$ and $b^{s+t} = 0$. So there exist $m_1, m_2 \in M$ and $n_1, n_2 \in N$ such that

$$\begin{pmatrix} a & n \\ m & b \end{pmatrix}^{2(s+t)}$$

$$= \begin{pmatrix} a & n \\ m & b \end{pmatrix}^{s+t} \begin{pmatrix} a & n \\ m & b \end{pmatrix}^{s+t}$$

$$= \begin{pmatrix} a^{s+t} & n_1 \\ m_1 & b^{s+t} \end{pmatrix} \begin{pmatrix} a^{s+t} & n_2 \\ m_2 & b^{s+t} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & n_1 \\ m_1 & 0 \end{pmatrix} \begin{pmatrix} 0 & n_2 \\ m_2 & 0 \end{pmatrix}$$

$$= 0.$$

Therefore J(T) is a nil ideal of bounded index.

Assume that the bounded index of J(T) is k. Given any $x \in T$, we have a positive integer l such that

$$(x + J(T))^{l} (T/J(T))$$

$$= (x + J(T))^{l+1} (T/J(T))$$

$$= (x + J(T))^{kl+1} (T/J(T)).$$

So we have a $y+J(T)\in T/J(T)$ such that $\left(x+J(T)\right)^l=\left(x+J(T)\right)^{kl+1}\left(y+J(T)\right)$. Hence $x^l-x^{kl+1}y\in J(T)$. Therefore $(x^l-x^{kl+1}y)^k=0$. Thus we can find some $z\in T$ such that $x^{kl}=x^{kl+1}z$. That is, T is a strongly π -regular ring.

Suppose that $\begin{pmatrix} a & n \\ m & b \end{pmatrix}^p = 0$ for some $p \ge 1$. One easily checks that $\begin{pmatrix} a & n \\ m & b \end{pmatrix}^p = \begin{pmatrix} a^p & n_3 \\ m_3 & b^p \end{pmatrix}$ for some $m_3 \in M, n_3 \in N$. So $a^p = 0$ in A and $b^p = 0$ in B. Hence $a^s = 0$ and $b^t = 0$. Analogously to the consideration above, we claim that $\begin{pmatrix} a & n \\ m & b \end{pmatrix}^{2(s+t)} = 0$. Therefore T is of bounded index, as asserted.

Let $A=B=k[x]/(x^2)=\{a+bt\mid a,b\in k,t^2=0\}$, where k is a field of characteristic 2. Take M=N=k made into an A-module by $\alpha*(a+bt)=\alpha a$ with $\alpha,a,b\in k$. By [6, p.488], we know that A and B are both strongly π -regular rings. Assume that $(a+bt)^n=0$ in A. Then $(a+bt)^{2n}=0$, hence $a^{2n}=((a+bt)^2)^n=0$. So a=0.

Therefore $(a+bt)^2=a^2=0$. That is, A=B is a strongly π -regular ring of bounded index 2. Then with the zero pairings, all the conditions in Theorem 2 hold.

COROLLARY 3. Let T be the ring of a Morita context (A, B, M, N, ψ, ϕ) with zero pairings. If A and B are regular rings of bounded index, then T is a strongly π -regular ring.

Proof. Since A and B are regular rings of bounded index, they are strongly π -regular. Hence we get the result by Theorem 2.

COROLLARY 4. A ring R is a strongly π -regular ring of bounded index if and only if so is the ring of all $n \times n$ lower triangular matrices over R.

Proof. Suppose that the ring T of all $n \times n$ lower triangular matrices over R is a strongly π -regular ring of bounded index. Then we have an idempotent $e \in T$ such that $R \cong eTe$. Thus we easily check that R is a strongly π -regular ring of bounded index as well.

Conversely, assume that R is a strongly π -regular ring of bounded index. Applying Theorem 2, the triangular matrix ring $\begin{pmatrix} A & 0 \\ M & B \end{pmatrix}$ is a strongly π -regular rings of bounded index if and only if so are A and B. By induction, we obtain the result.

Similarly, we deduce that a ring R is a strongly π -regular ring of bounded index if and only if so is the ring of all $n \times n$ upper triangular matrices over R.

Let A_1, A_2, A_3 be rings with identities, and let M_{21}, M_{31}, M_{32} be (A_2, A_1) -, (A_3, A_1) -, (A_3, A_2) -bimodules, respectively. Let

$$\phi: M_{32} \bigotimes_{A_2} M_{21} \to M_{31}$$

be an (A_3,A_1) -homomorphism, and let $A=\begin{pmatrix}A_1&0&0\\M_{21}&A_2&0\\M_{31}&M_{32}&A_3\end{pmatrix}$ with usual matrix operations. Now we generalize Corollary 4 to formal triangular matrix rings.

THEOREM 5. The following are equivalent:

- (1) A_1, A_2 and A_3 are strongly π -regular rings of bounded index.
- (2) The formal triangular matrix ring $A = \begin{pmatrix} A_1 & 0 & 0 \\ M_{21} & A_2 & 0 \\ M_{31} & M_{32} & A_3 \end{pmatrix}$ is strongly π -regular rings of bounded index.

Proof. (1) \Rightarrow (2) Let $B = \begin{pmatrix} A_2 & 0 \\ M_{32} & A_3 \end{pmatrix}$ and $M = \begin{pmatrix} M_{21} \\ M_{31} \end{pmatrix}$. Because A_2 and A_3 are strongly π -regular rings of bounded index, so is the ring B by Theorem 2. In addition, A_1 is a strongly π -regular rings of bounded index. By using Theorem 2 again, we have $A = \begin{pmatrix} A_1 & 0 \\ M & B \end{pmatrix}$ is also a strongly π -regular rings of bounded index, as required.

 $(2) \Rightarrow (1)$ Suppose that the ring A is a strongly π -regular ring of bounded index. Then we have an idempotent $e \in T$ such that $R \cong eAe$. Therefore we conclude that R is a strongly π -regular ring of bounded index.

COROLLARY 6. Let A_1, A_2 and A_3 be regular rings of bounded index.

Then the formal triangular matrix ring
$$A=\begin{pmatrix}A_1&0&0\\M_{21}&A_2&0\\M_{31}&M_{32}&A_3\end{pmatrix}$$
 is strongly π -regular rings of bounded index.

Proof. Since every regular ring of bounded index is a strongly π -regular ring, by Theorem 5, the result follows.

Let I be an ideal of R. If there exists a positive integer p such that $I^p = 0$, then we call I a nilpotent ideal of R. By an argument of J. Stock (cf. [12, p.451]), one can construct a strongly π -regular ring R of bounded index 2, while J(R) is not T-nilpotent. Moreover, J(R) is not a nilpotent ideal. Let D be a division ring and let $R = \{(x_1, \cdots, x_n, y, y, \cdots) \mid x_i \in M_i(D), n \in \mathbb{N}, y \in D\}$ where y is treated as a scalar matrix of proper size when multiplied with x_i . By [14, Example 2.3], R is a strongly π -regular ring not of bounded index, while its Jacobson radical is nilpotent. For Morita context over strongly π -regular rings with nilpotent Jacobson radicals, we now observe the following fact.

THEOREM 7. Let T be the ring of a Morita context (A, B, M, N, ψ, ϕ) with zero pairings. Then T is a strongly π -regular ring with nilpotent Jacobson radical if and only if so are A and B.

Proof. One direction is obvious. Conversely, assume now that A and B are strongly π -regular rings with nilpotent Jacobson radicals. In view of Lemma 1, $J(T)\cong \left(\begin{array}{cc}J(A)&N\\M&J(B)\end{array}\right)$. Suppose that $J(A)^s=0$ and $J(B)^t=0$ for some s,t>0. Given any $\left(\begin{array}{cc}a&n\\m&b\end{array}\right)\in J(T)$, similarly to

the consideration in Theorem 2, we have $\begin{pmatrix} a & n \\ m & b \end{pmatrix}^{2(s+t)} = 0$. Hence $J(T)^{2(s+t)} = 0$. So the Jacobson radical of T is nilpotent. Given any $x \in T$, there is a positive integer k such that

$$(x + J(T))^{k} (T/J(T))$$

$$= (x + J(T))^{k+1} (T/J(T))$$

$$= (x + J(T))^{2(s+t)k+1} (T/J(T)).$$

So we have a $y + J(T) \in T/J(T)$ such that

$$(x + J(T))^k = (x + J(T))^{2(s+t)k+1}(y + J(T)),$$

whence $x^k - x^{2(s+t)k+1}y \in J(T)$. Therefore $(x^k - x^{2(s+t)k+1}y)^{2(s+t)} = 0$. Consequently, $x^{2(s+t)k} = x^{2(s+t)k+1}z$ for a $z \in T$. This yields that T is a strongly π -regular ring, as required.

COROLLARY 8. Let T be the ring of a Morita context (A, B, M, N, ψ, ϕ) with zero pairings. If A and B are right (left) artinian, then T is strongly π -regular.

Proof. Inasmuch as A and B are right (left) artinian, they are strongly π -regular rings with nilpotent Jacobson radicals. The proof is completed by Theorem 7.

COROLLARY 9. Let T be the ring of a Morita context (A, B, M, N, ψ, ϕ) with zero pairings. If A and B are regular P.I. rings, then T is a strongly π -regular ring.

Proof. Since A is a regular ring, we claim that every projective right A-module has the finite exchange property. By [12, Corollary 4.12], A is strongly π -regular rings. Likewise, B is strongly π -regular. Clearly, J(A) = 0 and J(B) = 0. Thus the result follows from Theorem 7.

A ring R is said to be right (left) quasi-duo if every maximal right (left) ideal is two-sided. Clearly, right (left) duo rings and weakly right (left) duo rings are all right (left) quasi-duo. By [13, Proposition 4.3], every P-exchange ring with all idempotents central is right (left) quasi-duo.

THEOREM 10. Let T be the ring of a Morita context (A, B, M, N, ψ, ϕ) with zero pairings. Then T is a right (left) quasi-duo strongly π -regular ring if and only if so are A and B.

Proof. It suffices to show that the result holds for right quasi-duo rings. Suppose that T is a right quasi-duo strongly π -regular ring. Now we construct a map $\theta: T \to A$ given by $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \mapsto a$ for any $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \in T$. Because of zero pairings, we claim that θ is a ring epi-

 $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \in T$. Because of zero pairings, we claim that θ is a ring epimorphism. Since every factor ring of right quasi-duo strongly π -regular ring is again a right quasi-duo strongly π -regular ring, $A \cong T/\mathrm{Ker}(\theta)$ is a right quasi-duo strongly π -regular ring. Likewise, B is also a right quasi-duo strongly π -regular ring.

Conversely, assume that A and B are both right quasi-duo strongly π -regular rings. It is well known that a ring R is right quasi-duo if and only if so is R/J(R). Thus A/J(A) and B/J(B) are both right quasi-duo rings. By using Lemma 1, we see that T/J(T) is right quasi-duo. Furthermore, T is also a right quasi-duo ring.

In view of [9, Lemma 6], A/J(A) and B/J(B) are both regular rings. Hence it follows by [13, Corollary 2.4] that they are abelian regular rings. This yields that T/J(T) is an abelian regular ring, so it is unit-regular. Thus for any $x + J(T) \in T/J(T)$, we have an idempotent $e \in T/J(T)$ and unit $u \in T/J(T)$ such that x + J(T) = eu. Since T is an exchange ring, idempotents can be lifted modulo J(T). On the other hand, units can be lifted modulo J(T). Therefore we have idempotent $f \in T$ and unit $v \in T$ such that x = fv + r for some $r \in J(T)$.

Given any $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \in J(T)$, then $a \in J(A)$ and $b \in J(B)$ by Lemma 1. As A and B are both strongly π -regular rings, there are positive integers s,t such that $a^s=0$ and $b^t=0$. Analogously to the discussion in Theorem 2, we have $\begin{pmatrix} a & n \\ m & b \end{pmatrix}^{2(s+t)} = 0$. That is, J(T) is nil. According to [9, Corollary 14], we conclude that T is a strongly π -regular ring.

COROLLARY 11. Let T be the ring of a Morita context (A, B, M, N, ψ, ϕ) with zero pairings. If A and B are right (left) quasi-duo rings with all prime ideals right (left) primitive, then T is a strongly π -regular ring.

Proof. By [13, Theorem 2.5], A and B are strongly π -regular rings. Thus we complete the proof by Theorem 10.

COROLLARY 12. A ring R is a right (left) quasi-duo strongly π -regular ring if and only if so is the ring of all $n \times n$ lower triangular matrices over R.

Proof. Suppose that the ring T of all $n \times n$ lower triangular matrices over R is a right (left) quasi-duo strongly π -regular ring. Then we have an idempotent $e \in T$ such that $R \cong eTe$. Thus R is a strongly π -regular ring. According to [13, Proposition 2.1], R is a right (left) quasi-duo ring, as required.

Conversely, assume now that R is a right (left) quasi-duo strongly π -regular ring. Using Theorem 10, we show that the triangular matrix ring $\left(\begin{array}{cc} A & 0 \\ M & B \end{array}\right)$ is a right (left) quasi-duo strongly π -regular ring if and only if so are A and B. By induction, we get the result.

Analogously, we deduce that a ring R is a right (left) quasi-duo strongly π -regular ring if and only if so is the ring of all $n \times n$ upper triangular matrices over R.

THEOREM 13. The following are equivalent:

(1) A_1, A_2 and A_3 are right (left) quasi-duo strongly π -regular rings.

(2) The formal triangular matrix ring
$$A = \begin{pmatrix} A_1 & 0 & 0 \\ M_{21} & A_2 & 0 \\ M_{31} & M_{32} & A_3 \end{pmatrix}$$
 is right (left) quasi-duo strongly π -regular ring.

Proof. (2) \Rightarrow (1) Clearly, A_1, A_2 and A_3 are all strongly π -regular

rings. Since
$$A$$
 is right (left) quasi-duo, so is $A/J(A)$. One easily checks that $J(A) = \begin{pmatrix} J(A_1) & 0 & 0 \\ M_{21} & J(A_2) & 0 \\ M_{31} & M_{32} & J(A_3) \end{pmatrix}$; hence, $A/J(A) \cong A_1/J(A_1) \oplus$

 $A_2/J(A_2) \oplus A_3/J(A_3)$. It is straightforward that $A_1/J(A_1) \oplus A_2/J(A_2) \oplus$ $A_3/J(A_3)$ is right (left) quasi-duo if and only if so are $A_1/J(A_1)$, $A_2/J(A_2)$

and
$$A_3/J(A_3)$$
. Therefore A_1, A_2 and A_3 are right (left) quasi-duo.

(1) \Rightarrow (2) Set $B = \begin{pmatrix} A_2 & 0 \\ M_{32} & A_3 \end{pmatrix}$ and $M = \begin{pmatrix} M_{21} \\ M_{31} \end{pmatrix}$. By Theorem 10, B is a right (left) quasi-duo strongly π -regular rings. Using Theorem 10 again, we get the result.

COROLLARY 14. Let A_1, A_2 and A_3 be right (left) quasi-duo regular rings. Then the formal triangular matrix ring $A = \begin{pmatrix} A_1 & 0 & 0 \\ M_{21} & A_2 & 0 \\ M_{31} & M_{32} & A_3 \end{pmatrix}$ is a strongly π -regular rings.

Proof. By [13, Theorem 2.7], every right (left) quasi-duo regular ring is strongly π -regular. It follows by Theorem 13 that A is a strongly π -regular ring.

References

- [1] P. Ara, Strongly π -regular rings have stable range one, Proc. Amer. Math. Soc. 124 (1996), 3293–3298.
- [2] P. Ara, M.G. Lozano and M.S. Molina, Local rings of exchange rings, Comm. Algebra 26 (1998), 4191–4205.
- [3] A. Badawi, On abelian π -regular rings, Comm. Algebra 25 (1997), 1009–1021.
- [4] W. D. Burgess and P. Menal, On strongly π-regular rings and homomorphisms into them, Comm. Algebra 16 (1988), 1701–1725.
- [5] H. Chen, Exchange rings with Artinian primitive factors, Algebra and Represent. Theory 2 (1999), 201–207.
- [6] A. Haghany, Hopficity and co-hopficity for Morita contexts, Comm. Algebra 27 (1999), 477-492.
- [7] C. Y. Hong, N. K. Kim, T. K. Kwak and Y. Lee, On weak π-regularity of rings whose prime ideals are maximal, J. Pure. Appl. Algebra 146 (2000), 35-44.
- [8] A. Haghany and K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra 27 (1999), 5507–5525.
- [9] N. K. Kim and Y. Lee, On right quasi-duo rings which are π -regular, Bull Korean Math. Soc. **37** (2000), 217–227.
- [10] Y. Lee and C. Huh, A note on π -regular rings, Kyungpook Math. J. **38** (1998), 157–161.
- [11] Y. Lee, C. O. Kim and H. K. Kim, On strongly π -regular rings, Kyungpook Math. J. **37** (1997), 291–295.
- [12] J. Stock, On rings whose projective modules have the exchange property, J. Algebra 103 (1986), 437-453.
- [13] H. P. Yu, On quasi-duo rings, Glasgow Math. J. 37 (1995), 21-31.
- [14] ______, On the structure of exchange rings, Comm. Algebra 25 (1997), 661-670.

Huanyin Chen, Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China

 $E\text{-}\textit{mail}\colon \text{chyzxl@sparc2.hunnu.edu.cn}$