DOI QR코드

DOI QR Code

EXTENSIONS OF STRONGLY π-REGULAR RINGS

  • Received : 2013.01.07
  • Published : 2014.03.31

Abstract

An ideal I of a ring R is strongly ${\pi}$-regular if for any $x{\in}I$ there exist $n{\in}\mathbb{N}$ and $y{\in}I$ such that $x^n=x^{n+1}y$. We prove that every strongly ${\pi}$-regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any $x{\in}I$ there exist two distinct m, $n{\in}\mathbb{N}$ such that $x^m=x^n$. Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly ${\pi}$-regular and for any $u{\in}U(I)$, $u^{-1}{\in}\mathbb{Z}[u]$.

Keywords

References

  1. P. Ara, Strongly ${\pi}$-regular rings have stable range one, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3293-3298. https://doi.org/10.1090/S0002-9939-96-03473-9
  2. A. Badawi, A. Y. M. Chin, and H. V. Chen, On rings with near idempotent elements, Internat. J. Pure Appl. Math. 1 (2002), no. 3, 253-259.
  3. G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. https://doi.org/10.1016/j.jpaa.2007.05.020
  4. M. Chacron, On a theorem of Herstein, Canad. J. Math. 21 (1969), 1348-1353. https://doi.org/10.4153/CJM-1969-148-5
  5. H. Chen, Rings Related to Stable Range Conditions, Series in Algebra 11, World Scientific, Hackensack, NJ, 2011.
  6. H. Chen and M. Chen, On strongly ${\pi}$-regular ideals, J. Pure Appl. Algebra 195 (2005), no. 1, 21-32. https://doi.org/10.1016/j.jpaa.2004.05.006
  7. A. J. Diesl and T. J. Dorsey, A note on completeness in the theory of strongly clean rings, Preprint.
  8. X. Du and Y. Yang, The adjoint semigroup of a ${\pi}$-regular rings, Acta Sci. Natur. Univ. Jilin. 3 (2001), no. 3, 35-37.
  9. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, San Francisco, Melbourne, 1979.
  10. N. K. Kim and Y. Lee, On strong ${\pi}$-regularity and ${\pi}$-regularity, Comm. Algebra 39 (2011), no. 11, 4470-4485. https://doi.org/10.1080/00927872.2010.524184
  11. M. Ohori, On strongly ${\pi}$-regular rings and periodic rings, Math. J. Okayama Univ. 27 (1985), 49-52.
  12. F. T. Shirley, Regular and Strongly II-Regular Rings, University of Texas at Austin, 1984.
  13. L.W.White, Strongly II-Regular Rings and Matrix Rings over Regular Rings, University of Texas at Austin, 1987.
  14. H. P. Yu, On strongly ${\pi}$-regular rings of stable range one, Bull. Austral. Math. Soc. 51 (1995), no. 3, 433-437. https://doi.org/10.1017/S0004972700014258