• Title/Summary/Keyword: strong damping

Search Result 163, Processing Time 0.019 seconds

SHALLOW ARCHES WITH WEAK AND STRONG DAMPING

  • Gutman, Semion;Ha, Junhong
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.945-966
    • /
    • 2017
  • The paper develops a rigorous mathematical framework for the behavior of arch and membrane like structures. Our main goal is to incorporate moving point loads. Both the weak and the strong damping cases are considered. First, we prove the existence and the uniqueness of the solutions. Then it is shown that the solution in the weak damping case is the limit of the strong damping solutions, as the strong damping vanishes. The theory is applied to a car moving on a bridge.

Seismic Design and Test of Viscoelastic Dampers in regions of Moderate Seismicity (중진 지역에서의 점탄성 감쇠기설계 및 제진 성능 실험)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.359-366
    • /
    • 1999
  • This paper is a study on the seismic design and test of viscoelastic dampers in regions of moderate seismicity. First moderate seismic waves are generated with measured strong seismic data based on the theory of effective peak acceleration. Then their response spectrums are compared each other to estimate the required damping to attenuate the vibration. As relatively smaller damping is required in the regions of moderate seismicity than in the regions of strong seismicity proper viscoelastic dampers can be designed according to the estimated damping. Finally a test building model is designed and the viscoelastic dampers are installed for the experimental study under moderate and strong earthquakes, It is found that viscoelastic dampers with low damping capacity developed in this study are enough to reduce the building response in regions of moderate seismicity.

  • PDF

Amplitude dependency of damping of tall structures by the random decrement technique

  • Xu, An;Xie, Zhuangning;Gu, Ming;Wu, Jiurong
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.159-182
    • /
    • 2015
  • This study focuses on the amplitude dependency of damping of tall structures by the random decrement technique (RDT). Many researchers have adopted RDT to establish the amplitude dependency of damping ratios in super-tall buildings under strong wind loads. In this study, a series of simulated examples were analyzed to examine the reliability of this method. Results show that damping ratios increase as vibration amplitudes increase in several cases; however, the damping ratios in the simulated signals were preset as constants. This finding reveals that this method and the derived amplitude-dependent damping ratio characteristics are unreliable. Moreover, this method would obviously yield misleading results if the simulated signals contain Gaussian white noise. Full-scale measurements on a super-tall building were conducted during four typhoons, and the recorded data were analyzed to observe the amplitude dependency of damping ratio. Relatively wide scatter is observed in the resulting damping ratios, and the damping ratios do not appear to have an obvious nonlinear relationship with vibration amplitude. Numerical simulation and field measurement results indicate that the widely-used method for establishing the amplitude-dependent damping characteristics of super-tall buildings and the conclusions derived from it might be questionable at the least. More field-measured data must be collected under strong wind loads, and the damping characteristics of super-tall buildings should be investigated further.

Wavelet-transform-based damping identification of a super-tall building under strong wind loads

  • Xu, An;Wu, Jiurong;Zhao, Ruohong
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.353-370
    • /
    • 2014
  • A new method is proposed in this study for estimating the damping ratio of a super tall building under strong wind loads with short-time measured acceleration signals. This method incorporates two main steps. Firstly, the power spectral density of wind-induced acceleration response is obtained by the wavelet transform, then the dynamic characteristics including the natural frequency and damping ratio for the first vibration mode are estimated by a nonlinear regression analysis on the power spectral density. A numerical simulation illustrated that the damping ratios identified by the wavelet spectrum are superior in precision and stability to those values obtained from Welch's periodogram spectrum. To verify the efficiency of the proposed method, wind-induced acceleration responses of the Guangzhou West Tower (GZWT) measured in the field during Typhoon Usagi, which affected this building on September 22, 2013, were used. The damping ratios identified varied from 0.38% to 0.61% in direction 1 and from 0.22% to 0.59% in direction 2. This information is expected to be of considerable interest and practical use for engineers and researchers involved in the wind-resistant design of super-tall buildings.

BLOW-UP OF SOLUTIONS FOR WAVE EQUATIONS WITH STRONG DAMPING AND VARIABLE-EXPONENT NONLINEARITY

  • Park, Sun-Hye
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.633-642
    • /
    • 2021
  • In this paper we consider the following strongly damped wave equation with variable-exponent nonlinearity utt(x, t) - ∆u(x, t) - ∆ut(x, t) = |u(x, t)|p(x)-2u(x, t), where the exponent p(·) of nonlinearity is a given measurable function. We establish finite time blow-up results for the solutions with non-positive initial energy and for certain solutions with positive initial energy. We extend the previous results for strongly damped wave equations with constant exponent nonlinearity to the equations with variable-exponent nonlinearity.

Input energy spectrum damping modification factors

  • Onur Merter;Taner Ucar
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.219-228
    • /
    • 2024
  • This study examines damping modification factors (DMFs) of elastic input energy spectra corresponding to a set of 116 earthquake ground motions. Mean input energy per mass spectra and mean DMFs are presented for both considered ground motion components. Damping ratios of 3%, 5%, 10%, 20%, and 30% are used and the 5% damping ratio is considered the benchmark for DMF computations. The geometric mean DMFs of the two horizontal components of each ground motion are computed and coefficients of variation are presented graphically. The results show that the input energy spectra-based DMFs exhibit a dependence on the damping ratio at very short periods and they tend to be nearly constant for larger periods. In addition, mean DMF variation is obtained graphically for also the damping ratio, and mathematical functions are fitted as a result of statistical analyses. A strong correlation between the computed DMFs and the ones from predicted equations is observed.

An Experimental Study on the Characteristics of the Repulsive Type Magnetic Bearing System using High Temperature Superconductor (고온 초전도체를 사용한 반발식 마그네틱 베어링의 특성에 관한 실험적 연구)

  • 유재한;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.202-206
    • /
    • 1996
  • An experimental study of the characteristics of the repulsiveytype magnetic bearing using high Tc superconductor is presented. In field cooling superconductor has the position-stability due to a flux pinning effect and the strong damping due to hysterisis, while in zero field cooling it has the only strong repulsive force due to Meissner effect. Lift force in superconducting levitation has a hysterisis characteristics, and it is the dissipation of energy, the mechanism of damping. As the relative linear velocity between a magnet and a superconductor increases, the area of the hysterisis loop becomes smaller. It means the decrease of damping. In field cooling, the static stiffness is very nonlinear in smaller than initial gap, but almost linear in larger than initial gap.

  • PDF

Dynamic identification of soil-structure system designed by direct displacement-based method for different site conditions

  • Mahmoudabadi, Vahidreza;Bahar, Omid;Jafari, Mohammad Kazem;Safiey, Amir
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.445-458
    • /
    • 2019
  • This study mainly aims to assess the performance of soil-structure systems designed by direct displacement-based method coupled with strong column-weak beam design concept through various system identification techniques under strong ground motions. To this end, various system identification methods are employed to evaluate the dynamic characteristics of a structure (i.e., modal frequency, system damping, mode shapes, and plastic hinge formation pattern) under a strong seismic excitation considering soil-structure interaction for different site conditions as specified by ASCE 7-10. The scope of the study narrowed down to the code-complying low- to high-rise steel moment resisting frames with various heights (4, 8, 12, 16-story). The comparison of the result of soil-structure systems with fix-based support condition indicates that the modal frequencies of these systems are highly influenced by the structure heights, specifically for the softer soils. This trend is more significant for higher modes of the system which can considerably dominate the response of structures in which the higher modes have more contribution in dynamic response. Amongst all studied modes of the vibration, the damping ratio estimated for the first mode is relatively the closet to the initial assumed damping ratios. Moreover, it was found that fewer plastic hinges are developed in the structure of soil-structure systems with a softer soil which contradicts the general expectation of higher damageability of such structural systems.

Development of the Damping Coefficients for Weak and Moderate Earthquake Ground Motions

  • Kim, Myeong-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • Most of seismic design code provisions provide the design response spectra for defining design earthquake ground motions. The design spectra in the code provisions generally come under the 5% of critical damping value, which corresponds to the responses of common structure under the design earthquake. Energy dissipation devices and seismic isolation systems became more popular and the design response spectra at higher damping levels are required. Damping coefficients can be effectively used in conversion of 5%-damped design spectra into other damping levels. These coefficients in the current seismic design code provisions are based on the strong ground motion records. Since the weak and moderate earthquake data have different characteristics from those of strong earthquake data, the application of these coefficients should be investigated in the weak and moderate earthquakes zones. In this study, damping coefficients based on the weak and moderate ground motions were developed and compared to those of current seismic design code provisions.

Switching Transient Shaping by Application of a Magnetically Coupled PCB Damping Layer

  • Hartmann, Michael;Musing, Andreas;Kolar, Johann W.
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.308-319
    • /
    • 2009
  • An increasing number of power electronic applications require high power density. Therefore, the switching frequency and switching speed have to be raised considerably. However, the very fast switching transients induce a strong voltage and current ringing. In this work, a novel damping concept is introduced where the parasitic wiring inductances are advantageously magnetically coupled with a damping layer for attenuating these unwanted oscillations. The proposed damping layer can be implemented using standard materials and printed circuit board manufacturing processes. The system behavior is analyzed in detail and design guidelines for a damping layer with optimized RC termination network are given. The effectiveness of the introduced layer is determined by layout parasitics which are calculated by application of the Partial Element Equivalent Circuit (PEEC) simulation method. Finally, simulations and measurements on a laboratory prototype demonstrate the good performance of the proposed damping approach.