• 제목/요약/키워드: strictly monotone

검색결과 16건 처리시간 0.029초

CHARACTERIZATION OF GLOBALLY-UNIQUELY-SOLVABLE PROPERTY OF A CONE-PRESERVING Z-TRANSFORMATION ON EUCLIDEAN JORDAN ALGEBRAS

  • SONG, YOON J.
    • Journal of applied mathematics & informatics
    • /
    • 제34권3_4호
    • /
    • pp.309-317
    • /
    • 2016
  • Let V be a Euclidean Jordan algebra with a symmetric cone K. We show that for a Z-transformation L with the additional property L(K) ⊆ K (which we will call ’cone-preserving’), GUS ⇔ strictly copositive on K ⇔ monotone + P. Specializing the result to the Stein transformation SA(X) := X - AXAT on the space of real symmetric matrices with the property $S_A(S^n_+){\subseteq}S^n_+$, we deduce that SA GUS ⇔ I ± A positive definite.

SOLUTIONS OF SYSTEMS OF VARIATIONAL INEQUALITIES ON FIXED POINTS OF NONEXPANSIVE MAPPINGS

  • Piri, Hossein
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.621-640
    • /
    • 2014
  • In this paper, we introduce a new approximating method for finding the common element of the set of fixed points of nonexpansive mappings and the set of solution of system variational inequalities for finite family of inverse strongly monotone mappings and strictly pseudo-contractive of Browder-Petryshyn type mappings. We show that the sequence converges strongly to a common element the above two sets under some parameter controling conditions. Our results improve and extend the results announced by many others.

MONOTONE ITERATIVE TECHNIQUE FOR IMPULSIVE DIFFERENTIAL EQUATIONS WITH TIME VARIABLES

  • Qi, Jian-Gang;Liu, Yan-Sheng
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.539-552
    • /
    • 2000
  • In this paper, we established the general comparison principles for IVP of impulsive differential equations with time variables, which strictly extend and improve the precious comparison results obtained by V. Lakes. et.al . and S.K.Kaul([3]-[7]). Whit the general comparison results, we constructed the monotone iterative sequences of solution for IVP of such equations which converges the maximal and minimal and minimal solutions , respectively.

ON POSITIVE SEMIDEFINITE PRESERVING STEIN TRANSFORMATION

  • Song, Yoon J.
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.229-234
    • /
    • 2015
  • In the setting of semidefinite linear complementarity problems on $S^n$, we focus on the Stein Transformation $S_A(X):=X-AXA^T$ for $A{\in}R^{n{\times}n}$ that is positive semidefinite preserving (i.e., $S_A(S^n_+){\subseteq}S^n_+$) and show that such transformation is strictly monotone if and only if it is nondegenerate. We also show that a positive semidefinite preserving $S_A$ has the Ultra-GUS property if and only if $1{\not\in}{\sigma}(A){\sigma}(A)$.

극대 증가 부분서열을 찾는 선형 알고리즘 (Linear-time algorithms for computing a maximal increasing subsequence)

  • 나중채
    • 스마트미디어저널
    • /
    • 제12권6호
    • /
    • pp.9-14
    • /
    • 2023
  • 최장 증가 부분서열(longest increasing subsequence)은 컴퓨터 과학 분야에서 오랫동안 연구되어온 주요 문제이다. 본 논문에서는 최장 조건을 극대로 완화한 극대 증가 부분서열(maximal increasing subsequence) 문제를 고려한다. 본 논문에서는 두 가지 버전의 증가 개념(단조증가, 순증가)에 대해, 알파벳 Σ 에 대한 서열의 극대 증가 부분서열을 구하는 선형시간 알고리즘을 제안한다. 극대 단조증가 부분서열을 구하는 알고리즘은 O(1) 공간을 사용하고, 극대 순증가 부분서열을 구하는 알고리즘은 O(|Σ|) 공간을 사용한다.

STRONG CONVERGENCE THEOREMS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY MONOTONE MAPPINGS

  • He, Xin-Feng;Xu, Yong-Chun;He, Zhen
    • East Asian mathematical journal
    • /
    • 제27권1호
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, we consider an iterative scheme for finding a common element of the set of fixed points of a asymptotically quasi nonexpansive mapping and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common fixed point of a asymptotically quasi-nonexpansive mapping and strictly pseudocontractive mapping and the problem of finding a common element of the set of fixed points of a asymptotically quasi-nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • 대한수학회지
    • /
    • 제55권4호
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.

On Paranormed Type Fuzzy Real Valued Class of Sequences 2F(p)

  • Sen, Mausumi;Roy, Santanu
    • Kyungpook Mathematical Journal
    • /
    • 제51권3호
    • /
    • pp.345-352
    • /
    • 2011
  • In this article we introduce the fuzzy real valued double sequence spaces $_2{\ell}^F$ (p) where p = ($p_{nk}$) is a double sequence of bounded strictly positive numbers. We study their different properties like completeness, solidness, symmetricity, convergence free etc. We prove some inclusion results also.

SOME RESULTS RELATED TO NON-DEGENERATE LINEAR TRANSFORMATIONS ON EUCLIDEAN JORDAN ALGEBRAS

  • K. Saravanan;V. Piramanantham;R. Theivaraman
    • Korean Journal of Mathematics
    • /
    • 제31권4호
    • /
    • pp.495-504
    • /
    • 2023
  • This article deals with non-degenerate linear transformations on Euclidean Jordan algebras. First, we study non-degenerate for cone invariant, copositive, Lyapunov-like, and relaxation transformations. Further, we study that the non-degenerate is invariant under principal pivotal transformations and algebraic automorphisms.

A GENERAL ITERATIVE ALGORITHM FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

  • Thianwan, Sornsak
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.13-30
    • /
    • 2010
  • Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by $x_0\;{\in}\;C$ arbitrarily chosen, $x_{n+1}\;=\;{\alpha}_n{\gamma}f(W_nx_n)+{\beta}_nx_n+((1-{\beta}_n)I-{\alpha}_nA)W_nP_C(I-s_nB)x_n$, ${\forall}_n\;{\geq}\;0$, where $\gamma$ > 0, B : C $\rightarrow$ H is a $\beta$-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient $\alpha$ (0 < $\alpha$ < 1), $P_C$ is a projection of H onto C, A is a strongly positive linear bounded operator on H and $W_n$ is the W-mapping generated by a finite family of nonexpansive mappings $T_1$, $T_2$, ${\ldots}$, $T_N$ and {$\lambda_{n,1}$}, {$\lambda_{n,2}$}, ${\ldots}$, {$\lambda_{n,N}$}. Nonexpansivity of each $T_i$ ensures the nonexpansivity of $W_n$. We prove that the sequence {$x_n$} generated by the above iterative algorithm converges strongly to a common fixed point $q\;{\in}\;F$ := $\bigcap^N_{i=1}F(T_i)\;\bigcap\;VI(C,\;B)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)q,\;p\;-\;q{\rangle}\;{\leq}\;0$ for all $p\;{\in}\;F$. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.