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CHARACTERIZATION OF GLOBALLY-UNIQUELY-SOLVABLE

PROPERTY OF A CONE-PRESERVING

Z-TRANSFORMATION ON EUCLIDEAN JORDAN ALGEBRAS

YOON J. SONG

Abstract. Let V be a Euclidean Jordan algebra with a symmetric cone
K. We show that for a Z-transformation L with the additional property
L(K) ⊆ K (which we will call ’cone-preserving’),

GUS ⇐⇒ strictly copositive on K ⇐⇒ monotone + P.

Specializing the result to the Stein transformation SA(X) := X − AXAT

on the space of real symmetric matrices with the property SA(Sn
+) ⊆ Sn

+,
we deduce that

SA GUS ⇐⇒ I ±A positive definite.
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1. Introduction

Consider a real finite dimensional Hilbert space V and let K be a proper cone
in V , i.e., K is a closed convex cone in V with K∩ (−K) = {0} and K−K = V .
Let the dual of K be defined by

K∗ := {x ∈ V : ⟨x, y⟩ ≥ 0 for all y ∈ K}.

Under this setting, the cone linear complementarity problem, which is denoted
by LCP(L,K, q), is to find x ∈ V such that

x ∈ K, y := L(x) + q ∈ K∗, and ⟨x, y⟩ = 0. (1)

There were many attempts in characterizing the transformation L so that the
LCP(L,K, q) has a unique solution for any given q ∈ V , the so-called Globally-
Uniquely-Solvable property (GUS-property, for short).
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Restricting V to a Euclidean Jordan algebra and K to a symmetric cone in
V , Gowda and Sznajder in 2007 [6] characterized GUS-property of an alge-
bra automorphism L (an invertible mapping such that L(x ◦ y) = L(x) ◦ L(y)
(p.469 of [6] where ’◦’ denotes the Jordan product). They showed that for such
transformation, GUS = P (Theorem 5.1 of [6]).

In 2013, Yang and Yuan [14] characterized GUS-property when K is the
second-order cone (also known as the Lorentz cone). They provided sufficient
and necessary conditions on the matrix M so that M has the GUS-property
(Theorem 2 of [14]).

In 2015, Balaji characterized the GUS-property of L when (V, ◦, ⟨·, ·⟩) is the
Jordan spin algebra. He [1] showed that
GUS = P+ L positive semidefinite on the boundary of K.

In this paper, we focus our attention to a symmetric cone K in a Euclidean
Jordan algebra V where L is a Z-transformation with resepect to K such that
L(K) ⊆ K. The term, Z-transformation, is defined by Gowda and J. Tao [8] to
designate a linear transformation L : V → V is such that

x ∈ K, y ∈ K∗, and ⟨x, y⟩ = 0 =⇒ ⟨L(x), y⟩ ≤ 0.

There are many examples of Z-transformations including

L(X) = X −
k∑

i=1

BiXBi
T

that ha applications in control theory [10]. For many other examples, we refer
the readers to Section 3 of [8].

Gowda and Sznajder in 2007 [6] characterized GUS-property of L where
both L and −L are Z-transformations (so-called Lyapunov-like transformation
(Section 7 of [6])). They showed (Theorem 7.1 of [6]) that such L has the
GUS-property if and only if L is positive stable (that is, every eigenvalue of
L has positive real parts) and positive semidefinite. Recently, Kong, Tao, et
al. characterized the GUS-property of a Z-transformation on a Lorentz cone
(Theorem 3.2 of [9]).

We show in this paper that for a linear transformation L : V → V where V
is a Euclidean Jordan algebra with a symmetric cone K such that L(K) ⊆ K:

GUS ∩ Z = [strictly copositive on K] ∩ Z = [monotone] ∩P ∩ Z.

The composition of the paper is as follows: In section 2, we provide nota-
tions, definitions and preliminaries. In section 3, the characterization of the
GUS-property of a cone-preserving (i.e., L(K) ⊆ K) Z-transformation is estab-
lished. In section 4, we specialize the result to the Stein transformation SA with
SA(S

n
+) ⊆ Sn

+ and get some matrix theoretic result relating the GUS-property.
A conclusion is given in section 5.
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2. Definitions and Preliminaries

First, we describe all the notations which are used in this paper. The ’∗’
denotes the Hadamard product (entry-wise product) of matrices whereas ’◦’
denotes the Jordan product. For a vector d ∈ Rn, d ≥ (>)0 means every
component of d is nonnegative (positive). The notation d ≤ 0 means −d ≥ 0.
We write Diag(d) to mean a diagonal matrix whose diagonal is the vector d.

The notation ∥d∥ denotes the Euclidean norm, that is, ∥d∥ =
√∑n

i=1 di
2.

For a diagonal matrix D, diag(D) means a vector whose entries are the diag-
onal of D. We write ρ(A) to denote the spectral radius of A, i.e., the maximum
distance from the origin to an eigenvalue of A in the complex plane. Finally,
tr(AB) means the sum of the diagonal elements of the matrix product AB.

We now list definitions and state preliminary results that go along with the
corresponding definition.

A Euclidean Jordan algebra is a triple (V, ◦, ⟨·, ·⟩) where (V, ⟨·, ·⟩) is a finite
dimensional inner product space over R and (x, y) 7→ x ◦ y : V × V → V is a
bilinear mapping satisfying the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V ,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V where x2 := x ◦ x, and
(iii) ⟨x ◦ y, z⟩ = ⟨y, x ◦ z⟩ for all x, y, z ∈ V .

In a Euclidean Jordan algebra V , the set of squares

K := {x ◦ x : x ∈ V }

is a symmetric cone (Faraut and Korányi [3], p.46). This K is a self-dual (i.e.,
K = K∗) closed convex cone, and proper. For standard examples of Euclidean
Jordan algebras, we refer the readers to p. 465 of [6].

This symmetric cone K induces a (partial) order on V (section 2.1 of [7]):

x ≤ y (or y ≥ x) ⇐⇒ y − x ∈ K.

Since K is self-dual, closed and convex cone, let ΠK denote the metric projection
onto K, that is, for an x ∈ V , x+ := ΠK(x) if and only if x+ ∈ K and ∥x −
x+∥ ≤ ∥x − y∥ for all y ∈ K. It is well known that x+ is unique (by Moreau
decomposition [11]) and any x ∈ V can be written as

x = x+ − x−, where x− = x+ − x,

with x+, x− ≥ 0 and ⟨x+, x−⟩ = 0.

In a Euclidean Jordan algebra V , for a given x ∈ V , Gowda and Sznajder
(p.464 of [6]) defined the Lyapunov transformation Lx : V → V as

Lx(z) = x ◦ z,
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and called the elements x and y operator commute if LxLy = LyLx. Moreover,
for x, y ∈ K, if ⟨x, y⟩ = 0, then x and y operator commute and x◦y = 0 (Propo-
sition 2.2 of [6]).

A linear transformation L has the

• GUS (Globally-Uniquely-Solvable)-property if for all q ∈ V , LCP(L,K, q)
has a unique solution.

• P-property if
[x ◦ L(x) ≤ 0 and x and L(x) operator commute] =⇒ x = 0.

• Q-property if for all q ∈ V , LCP(L,K, q) has a solution.
It is known (see Theorem 12, 14, and 17 of [7]) that

GUS =⇒ P =⇒ Q.

A linear transformation L : V → V is called

• copositve on K if ⟨L(x), x⟩ ≥ 0 ∀x ∈ K; strictly copositive on K if
⟨L(x), x⟩ > 0 for all nonzero x ∈ K.

• a Z-transformation with respect to K (written L ∈ Z(K) for short) if

x ∈ K, y ∈ K∗, and ⟨x, y⟩ = 0 ⇒ ⟨L(x), y⟩ ≤ 0.

From the definition, it is clear that if L ∈ Z(K), then LT ∈ Z(K∗).
Moreover, when L ∈ Z(K) where K is a symmetric cone in a Eu-

clidean Jordan algebra, the following are equivalent (extracted from
Theorem 6 of [8]):
(i) L has the Q-property with respect to K.
(ii) L−1 exists and L−1(K) ⊆ K.

• Monotone:
A linear transformation L : V → V is called monotone if ⟨L(x), x⟩ ≥
0 ∀x ∈ V .

Specializing Corollary 6 of [4] to our case, we get that if L ∈ Z(K) is strictly
copositive on K (where K is a symmetric cone in a Euclidean Jordan algebra),
then L is monotone.

In addition, Theorem 22 [7] states that for a monotone transformation,

P ⇐⇒ GUS.

3. GUS-property of a cone-preserving Z-transformation on a
Euclidean Jordan Algebra

We will call a Z-transformation with respect to K as simply Z-transformation
if not otherwise specified. We first show that for a Z-transformation L : V → V
with L(K) ⊆ K, GUS-property is equivalent to L being strictly copositive on
the symmetric cone K.

Theorem 3.1. Consider a Euclidean Jordan algebra (V, ◦, ⟨·, ·⟩) and a symmet-
ric cone K in V. For a Z-transformation L : V → V with L(K) ⊆ K, the
following are equivalent:
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(a) L is strictly copositive on K.
(b) L has the GUS-property, i.e., LCP(L,K, q) has a unique solution for

all Q ∈ V .

Proof. For (a) ⇒ (b): Note that our assumption leads to L being monotone.
Suppose there exists q ∈ V with two distinct solutions x1 and x2 in K. Let
yi = L(xi)+ q ∈ K for i = 1, 2, and let z = x1 −x2. Linearity and monotonicity
of L together imply

0 ≤ ⟨z, L(z)⟩ = ⟨x1 − x2, y1 − y2⟩ = −⟨x2, y1⟩ − ⟨x1, y2⟩ ≤ 0,

whence ⟨z, L(z)⟩ = 0. Then, by writing z = z+ − z−, we get

0 = ⟨z+ − z−, L(z+ − z−)⟩
= ⟨z+, L(z+)⟩+ ⟨z−, L(z−)⟩ − ⟨z+, L(z−)⟩ − ⟨z−, L(z+)⟩.

Since both z+ and z− are in K with at least one of them nonzero, the sum
of the first two terms is positive by strict copositivity of L on K. Moreover,
since the symmetric cone K is self-dual and L ∈ Z(K), LT ∈ Z(K). Then
⟨z+, L(z−)⟩ = ⟨LT (z+), z−⟩ with z+ and z− orthogonal, therefore, ⟨z+, L(z−)⟩
and ⟨z−, L(z+)⟩ are both nonpositive by Z-property of LT . However, these
observations lead to an absurd conclusion, namely,

0 = ⟨z, L(z)⟩ > 0.

Hence L has the GUS-property.
For (b) ⇒ (a): Suppose there exists 0 ̸= x ∈ K such that

⟨x, L(x)⟩ ≤ 0. (2)

Since L has the GUS-property, it has the Q-property. So L−1 exists and
L−1(K) ⊆ K. Since L(K) ⊆ K and 0 ̸= x ∈ K, one can find 0 ̸= y ∈ K such
that x = L−1(y). Then (2) becomes ⟨L−1(y), y⟩ = ⟨x, y⟩ ≤ 0. Since both x, y
are elements of K, this means x ◦ y = 0 = x ◦ L(x) for some nonzero x, and
x and L(x) operator commute. But note that since GUS ⇒ P for L, this is a
contradiction. This completes the proof. �

Now we establish the main result of the paper.

Corollary 3.2. For a Z-transformation L on a Euclidean Jordan algebra with
a symmetric cone K with L(K) ⊆ K, the following are equivalent:

(a) L is strictly copositive on K.
(b) L has the GUS-property.
(c) L is monotone and has the P-property.

Proof. The equivalence of (a) and (b) follows from Theorem 3.1. For (b) ⇒ (c):
if L has the GUS-property, then by Theorem 3.1, L is strictly copositive on K,
and hence L is monotone, and GUS ⇒ P. Hence (c) holds. For the converse,
P = GUS for a monotone transformation. This completes the proof. �
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4. GUS-property of the Stein Transformation SA : Sn → Sn when
SA(S

n
+) ⊆ Sn

+

In this section, we restrict our attention to the space of real symmetric ma-
trices Sn and the Stein transformation L = SA : Sn → Sn, defined by

SA(X) := X −AXAT , A ∈ Rn×n.

We recall below some known results for SA:

(a) SA ∈ Z(Sn
+) (Example 3, Section 3 [8]).

(b) ρ(A) < 1 ⇐⇒ SA ∈ P (Theorem 11 [5]).

Using Corollary 3.2, we try to characterize the GUS-property of SA in terms
of the matrix A when SA(S

n
+) ⊆ Sn

+.
First we recall useful results for nonnegative matrices:

Lemma 4.1 (Part of Theorem (1.1) of [2]). If A is a nonnegative square matrix,
then

(a) ρ(A), the spectral radius of A, is an eigenvalue,
(b) A has a nonnegative eigenvector corresponding to ρ(A).

We characterize the strict copositivity of SA in terms of the matrix A, and
relate it to the GUS-property.

Theorem 4.2. For A ∈ Rn×n, consider the Stein Transformation SA(X) =
X −AXAT with SA(S

n
+) ⊆ Sn

+. Then the following are equivalent.

(a) SA is strictly copositive on Sn
+.

(b) ρ(UTAU ∗ UTAU) < 1 for any U orthogonal.
(c) SA has the GUS-property, i.e., SDLCP(SA, Q) has a unique solution

for all Q ∈ Sn.

Proof. For (a) ⇒ (b): suppose SA is strictly copositive on Sn
+, i.e., ⟨X,SA(X)⟩ >

0 for all 0 ̸= X ∈ Sn
+. Fix an arbitrary orthogonal matrix U and an arbitrary

vector d ≥ 0. Let B = UTAU , D = Diag(d), and X = UDUT . Then,

⟨X,SA(X)⟩ = ⟨UDUT , UDUT −AUDUTAT ⟩
= ⟨D,D −BDBT ⟩ = ⟨d, (I −B ∗B)d⟩
= ⟨d, d⟩ − ⟨d, (B ∗B)d⟩
> 0 ∀ 0 ̸= d ≥ 0.

So,

⟨d, (B ∗B)d⟩ < ⟨d, d⟩ ∀ 0 ̸= d ≥ 0. (3)

From Lemma 4.1, the matrix B ∗ B has a nonnegative (hence real) eigenvector
corresponding to the real eigenvalue ρ(B ∗ B). If x is such an eigenvector, then
⟨x, (B ∗ B)x⟩ = ρ(B ∗ B)⟨x, x⟩ < ⟨x, x⟩ by (3). Hence ρ(B ∗ B) < 1. Since U is
arbitrary, we get the desired result.
For (b) ⇒ (c): suppose SA is not GUS. Then there exists Q ∈ Sn such that two
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distinct symmetric positive semidefinite matricesX1 andX2 solve SDLCP(SA, Q).
Let Yi = SA(Xi)+Q for i = 1, 2, and let Z = X1−X2. Then by linearity of SA,

⟨Z, SA(Z)⟩ = ⟨X1 −X2, Y1 − Y2⟩ ≤ 0.

Let us write Z = UDUT in a way that diagonal of D is the eigenvalues of
Z in decreasing order. That is, D = D+ − D− where D+ has only positive
eigenvalues of Z (if any) or zero on its diagonal and D− has absolute values
of negative eigenvalues of Z (if any) or zero on its diagonal. Note that both
D+, D− ≽ 0, D+D− = 0, and at least one of D+ or D− is nonzero since Z ̸= 0.
Now let B = UTAU , and d = diag(D), to get

0 ≥ ⟨Z, SA(Z)⟩ = ⟨d, (I −B ∗B)d⟩
= ⟨d+ − d−, (I −B ∗B)(d+ − d−)⟩
= ⟨d+, (I −B ∗B)d+⟩+ ⟨d−, (I −B ∗B)d−⟩

−⟨d+, (I −B ∗B)d−⟩ − ⟨d−, (I −B ∗B)d+⟩.
Note that
⟨d+, (I−B∗B)d+⟩ = ⟨UD+UT , UD+UT−AUD+UTAT ⟩, and a similar equation
holds for ⟨d−, (I − B ∗ B)d−⟩ as well. Since both d+ and d− are nonnegative
with at least one of d+ or d− is nonzero, the sum of these two terms is positive
by strictly copositivity of SA. Moreover,
⟨d+, (I − B ∗ B)d−⟩ = ⟨d+, d−⟩ − ⟨d+, (B ∗ B)d−⟩ ≤ 0 because d+ and d− are
orthogonal and (B ∗ B) is a nonnegative matrix. Same conclusion holds for
⟨d−, (I −B ∗B)d+⟩. However, these observations lead to an absurd conclusion,
namely, 0 ≥ ⟨Z, SA(Z)⟩ > 0. Hence SA is GUS and (b) ⇒ (c) is established.

Finally, the implication (c) ⇒ (a) is obtained by applying the result of The-
orem 3.1 for V = Sn,K = Sn

+, and L = SA. �
Now, We give a matrix-theoretic characterization of the GUS-property of the

Stein Transformation SA(X) = X −AXAT with SA(S
n
+) ⊆ Sn

+ below and show
that, interestingly, strict copositivity and strict monotonicity are equivalent in
such case, i.e., if we let K = Sn

+ and V = Sn, then

⟨X,SA(X)⟩ > 0 ∀X ∈ K ⇐⇒ ⟨X,SA(X)⟩ > 0 ∀X ∈ V.

That is, SA positive definite on the symmetric coneK implies SA positive definite
for the whole space V .

Corollary 4.3. For A ∈ Rn×n, consider the Stein Transformation SA(X) =
X −AXAT with SA(S

n
+) ⊆ Sn

+. Then the following are equivalent.

(a) I ±A is positive definite.
(b) ρ(A) < 1
(c) 1 ̸∈ σ(A)σ(A)
(d) SA has the GUS-property, i.e., SDLCP(SA, Q) has a unique solution

for all Q ∈ Sn.
(e) SA is strictly copositive on Sn

+.
(f) SA is strictly monotone.
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(g) ρ(UTAU ∗ UTAU) < 1 for any U orthogonal.

Proof. The equivalence of the statements (a), (b), and (c) is from Theorem 2.5
(p233) of [13]. The equivalence of the statements (c) and (f) is from Theorem
2.4 (p232) of [13]. On the other hand, the equivalence of the statements (d) and
(e) is from Theorem 4.2 of this paper. Moreover, (d) ⇒ (b) (GUS ⇒ P), and
(f) ⇒ (d) (strict monotonicity ⇒ GUS). Hence, the statements (a) through (f)
are all equivalent. Finally, the equivalence of (g) and (d) follows from Theorem
4.2 of this paper. �

5. Conclusion

In this paper, we showed that for a Z-transformation L with respect to a
symmetric cone K in a Euclidean Jordan algebra such that L(K) ⊆ K, the
following implications hold:

strictly copositive on K ⇐⇒ GUS ⇐⇒ monotone +P.

By specializing the result to the Stein transformation SA on the space of real
symmetric matrices such that SA(S

n
+) ⊆ Sn

+, we have

SA GUS ⇐⇒ I ±A positive definite.
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